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Dynamic scaling theory for a tethered membrane in solution
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We present the dynamic scaling behavior for the specific viscosity and diffusion coefficient of a single
membrane and membranes with nonzero concentration in solution. Starting from the membrane free energies,
we derive their Langevin equations. The corresponding Kirkwood diffusion equation, describing the time
evolution in configuration space, contains two kinds of time scales that are separated by the external dimension
4/(2—D) where D is the dimension of the internal space. These time scale separation behaviors depend
strongly on the hydrodynamic screening effect. For a single membrane solution, we resolve the dynamic
scaling exponents for the diffusion coefficient and intrinsic viscosity by the dimension reduction method. For
a concentrated membrane solution, the effective excluded volume strength and draining parameter are intro-
duced. The effective medium argument is applied to obtain a concentration dependent power law form for the
specific viscosity and diffusion coefficient, whose results contribute to a fundamental understanding of mem-
brane in solution and of hydrodynamic screening and excluded volume effects in many different solvents.
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[. INTRODUCTION pends on the positivity of the power of the bead number in
the draining parameter. We perform the dynamic scaling be-
Scaling behavior is a widely accepted concept, and existhavior of the diffusion coefficient and specific viscosity for
in many physical systems such as magnetic, polymer, menboth a single membrane and concentrated membranes dis-
brane, and disordered systems. The static scaling theory ablved in solution. In this context, the difference between a
polymer solutions was initiated in RefEl—7]. These theo- polymer solution and a membrane solution is shown in the
ries provide power laws for various quantities such as thelynamic critical exponent of a single entityee Table)land
structure factor and the second virial coefficient. A simplein the Huggins coefficient of a dilute solutideee Table .
and systematic derivation was given by Kosmas and Freed The paper is organized as follows: In Sec. Il, we first
[8]. In order to generalize the static scaling result, the authorgescribe the Langevin equation and its corresponding Kirk-
of Refs.[9-14] introduced the dynamic scaling theory for wood diffusion equation for a membrane dissolved in solu-
polymer solutions. Moreover, Adler and Fre¢dF) [15]  tion. The scaling behaviors of the diffusion coefficient, in-
gave a systematic derivation of the dynamic scaling theoryrinsic viscosity, and dynamic structure factor for a single
for the diffusion coefficient and specific viscosity by apply- membrane are presented in Sec. Ill. We subsequently apply
ing the Kirkwood diffusion equation to polymers. Their thek-space Oseen tensor in Sec. IV, which was suggested by
single polymer theory is based upon a real space Oseen teftD to elucidate the dynamic scaling law of the diffusion

sor, and is valid for an external space dimensierd. Simi-  coefficient and specific viscosity for a membrane solution in
larly, Marqusee and Deutcfil6] (MD) extended the AF 3 finite concentration. Thus, ifisolvents and good solvents,
method tod>4. the hydrodynamic interaction and the excluded volume inter-

A tethered membrane is a general extension of a polymegction have to be renormalized. Based on the effective me-
and has attracted a great deal of attention within the last twgium argument, the concentration dependent part of the in-
decades. Its fundamental static scaling behavior has beegractions exhibits a power law behavior. Our finite
studied by scaling theory17], and static renormalization concentration results cover the limiting law behaviors for
group theory[18-20. Moreover, dynamic behaviors of the both the diffusion constant and specific viscosity.
membrane, such as the dynamic radius of gyration exponent
and the single monomer diffusion exponent were studied in
Refs.[21-28.

In the present paper, we generalize our previous wor

TABLE I. Dynamical critical exponent for one polymer and one
l?wembranewd and wy are defined in Sec. IlI.

[17] to study_ the dynamic sc;aling pehavior of a tethered Dynamical critical exponent Polynfer  Membran&
membrane dissolved in solution. It is well known that the

dynamic properties of a polymer in dilute solution are usu- o vy (d=2)v
ally treated as Brownian motion. Based on the generalized d
membrane free energy suggested by Yang and §bduwe 0y Vg 37

derive a Langevin equation for membrane dynamics. An
equivalent Fokker-Planck equation can then be elaborated
However, the membrane Kirkwood diffusion equation con-2vy=3/(2+d) in Ref.[15].
tains two time scales. The choice of these time scales dév in Eq. (1.
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TABLE II. Huggins coefficient of dilute polymer and membrane solutiing good solvent The related
notations are explained in Sec. IV.

Huggins coefficient

Dimension Polymer Membrane

for specific viscosity

4 dv—(2—-D)d/2
— —-3(2v4—1 —
<75 1~ 3(2vg— 1)a; M D (n_1)(2-D)d2“2
4 dv—2
—_— 1—2(3vy—2)a, r_ !
>2-5 1~ 2(3va=2)e YT D (n-1)(2-D)d2 *2
for diffusion coefficient
4 — — — . @=d[»-(2-D)/2] _
- —(2vy—1
<25 o~ (2= 1)a; Mt D (n-D)(2-D)di2 ™
d 4 —y D—(d—2)v _,
3D @ —2(vg—1)a} AT D= (n—1)2—-D)d2 *2
Il. KIRKWOOD DIFFUSION EQUATION OF A TETHERED F({ﬁ},L,I o) lkeT
MEMBRANE
1 L° o ° IR 2
We first consider a continuous model of a flexible poly- 2", d Xa; Xa
merized membrane with @ manifold flat internal spacBP,
> n n—-1
embedded byR(x) in a d-dimensional external spade?, 1 b Ao -
wherex e RP (see Fig. 1 This model is a general extension T artn iﬂl d X‘jﬂl SUROG) =Ry, (D)

of Edward’s model of a continuous polymer chain. The as- R

sociated action or free energy for a single membrane conwhere R(x) denotes the position vector on the membrane
figuration is given by from an arbitrary origin to a poink along the membrane.
Here L corresponds to the extended length drdk P is

the Kuhn length in each dimension, is the excluded vol-
ume strength, anklgT is the temperature in units of energy.
In Eqg. (1), the first term is the Gaussian elastic energy and
the interaction term denotes thebody excluded volume ef-
fect forv,>0. In our previous papd6], we showed that the
variable transformationR’ =b?~2"2~IR andx’ =bl~x,
when applied td~, result in the following homogeneity rela-
tion of the free energyf=F({R'}, L’=Nb, I'=1, v/,
=p,|("=2)P~(n=1)dp(n=1)(2=B)d2=nDy "\whereN is the bead
number in each dimension. Furthermore, the corresponding
time dependent properties of the membrane solution can be
described in terms of the conditional probability

P{R},t;{Ry},0) such that a membrane has the configuration

{R} at timet with the initial configuration{R,}. Hence the
evolution of P is governed by the Kirkwood diffusion equa-
tion which is derived from a stochastic process.

To begin with a description of membrane dynamics in
solution, we consider the coupled Langevin equations for the
membrane and solvent. First we employ the membrane con-

formation f(x,t) = VkR(x,t). At any beads of the mem-
brane, the friction force is balanced by the membrane-
membrane interaction and random forces. We can then
immediately write down the Langevin equation

kBTK

go m‘l'a(x,t) (2)

(9 > =2
Er(x,t)—u(r(x,t),t)—

FIG. 1. Self-avoiding tethered membrane with length
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where(, is the bare friction coefficient for a unit membrane Herel is a (d X d)-dimensional tensor matrix, and the super-
area, andi is the effective fluctuating solvent velocity field scriptL denotes the vector components orthogonal tokthe
at positioni” and timet; F is equivalent to=/kgT. We refer ~ direction.

to 5(x,t) term as a random force whose components satis According to the method establi_shed in some detailed by
the Gaussian white noise spectrum with zero mean and tﬁé‘? and Mazende?], the above t|me-dependent L_andau-
variance relation inzberg equation can be transformed into the Kirkwood

diffusion equation by averaging out the noises, iGeand .

2kgT Consequently, the Kirkwood diffusiof28] equation turns
<0a(xlvt)0ﬁ(x21t)>: 50 6D(X1_X2)5(t_t,)5aﬁ! out to be
D D

@ f=1,..d. ® TRy n= fL x| 160 x—x) L

. . . . ot 0 SR(X,t) o
For a polymer dissolved in solution, the above variance of
random force is then reduced to a scalar form kT _ - R
(6(x1,t) 6(X,,1)) = (2kgT/{p)d (X1 —X,) 8(t—t"), whered +p§—T(R(x)—R(x’))]
indicates the dimension in E@). 7o

Now we consider the solvent velocity field. It is well

known that the fluctuating solvent velocity field obeys the o

Navier-Stokes equation, which contains the friction forces X RO 0) + PN ]P({R},t) )
due to the membrane and the random thermal velocity fluc- ' '
uation in the fluid, where  TR(X)—R(x)")=(2m) [ d exdik- (R(x)
9 . . kgTk —R(x'))]k~2 is the real space Oseen tensor that is a funda-
pUy.H= noV2a(y,t) —Vp— o mental quantity in all dimensions, ang is the mode cou-
pling constant.
LD SFE . . Equation(7) is the starting point of our dynamical scaling
xf dPx SO SY—RX, D]+ (Y1), analysis. However, the time scale in E@) is not unique.
0 Fx.0 There are two time scales such as
(4) kBT b(Z—D)/Z d
wherep is the solvent densityy, is the solvent viscosity and a %( | )

the position vecto§ e RY. Herep is the effective hydrostatic

pressure in the fluidf is the hydrodynamic fluctuation ran- from the pa(kgT/ 70) T(R(X)—R(x")) term and t”
dom force density with zero mean, and its variance satisfies=t(kgT/¢,)(b%/177P) from the 6°(x—x")(kgT/{o) term.
This makes the study of membrane dynamics quite compli-
(f(Y,Of gy t"))= —2kBTK7]0€25d()7—V’)ﬁ(t—t')5aﬁ. cated. The choice of these time scales depends on the mem-
brane concentration. In addition, the criteria of determining
5 which time scale is suitable is based on the following argu-
Furthermore, the solvent velocity field(y,t) obeys the in- ,[1,1 efr(r)trs.dv<\/2c/e(nzg13)c oanncde tr},t r?glrogiic}éjgl_tg)z.eg)h v;/ﬁeczgﬁ_se

compressibility conditiony - d=0. o rary, whenc+0, we uset” for d<4/(2—D) andt’ for d
In order to discuss the membrane dynamics, it is usefu 4](2—D). The reason for this is due to the asymptotic

for us to transform the preceding stochastic Langevin €QUaahavior of the bead numbet in the draining parameter
tion into an equivalent probability description, such as the '

corresponding Kirkwood diffusion equation in configuration l.e., the draining parameter has to converge when.
space. The transformation of the Langevin equation into the
Kirkwood diffusion equation is carried out by kspace IIl. DYNAMIC SCALING FOR A SINGLE MEMBRANE
method, and the Fourier transform ‘of the Naiver-Stokes |, this section, we begin by considering some basic facts
equation is defined byig(t)=fd%€e* Yi(y,t). We elimi-  on the dynamic scaling behavior of the diffusion coefficient,
nate the pressure term and obtain the transversal componeiisrinsic viscosity, and dynamic structure factor for a single
of Eq. (4), that implies the incompressibility- G,=0, such ~membrane dissolved i® and good solvents.
as

A. Diffusion coefficient

~

— pork2d;— kBIK According to the Kirkwood diffusion equation, we can

| see that the membrane dynamical behavior is governed by
the set of membrane and solvent dependent parameters
+F§(t)- 6) {kgT/Zo, kgT/ 7y, L, k, andv,}. In this system, the time

scale of the solvated membrane system follows the transfor-

?Eal xu

i Ue(t)=|1
Pﬁuk( )=

SF - -
% D ik-R(x,t)
fd XS ©
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mation t’ or t”. Linear response theory predicts that the
single membrane diffusion coefficieBty may be written as

_’]_ ©
04— [ “agvivio, ® . .

/ ’?p’ 1 ri,[’f/n;"'zli
whereV(t) is the velocity of the center of mass of the mem- ’,’n ‘llﬂ%’%lp’zl’l{!
brane, and is equal to (I;L?)f(L)Dde(a/at)ﬁ(x,t). The term ’ ,"”‘;I”,l)’mzl [I:I
in angular brackets in E¢8) indicates the ensemble average, q "'z:"%;’ﬂ:’z;"’,")"
and is expressed in terms of the probability distribution that / ‘}!,6’%5’%&"05”#
is obtained by solving the Kirkwood diffusion equation. ,':lm’,[’l’” "'ml”

To write down the scaling function, we substitute Ef). ~ i i
into Eq. (8), which results in the dynamic scaling relation- f— L —
ships :

__"B —2Dp(d/2—1)(2-D)—2D
Dd_m—_zN b ) )

FIG. 2. A membrane confined between two infinite planes dis-
NY 7o bPH(27PI2mdr2 Nb.v tancea apart.
p| 7. — prz—da NDbvp
g l . : o .
0 is more complicated. The hydrodynamic interactigine Y
« | (2D~ (n- 1)dp(n-1)(2-D)d/2- nD term) approaches zero whed— . On the othe_r hand, t_he
' excluded volume strengttthe Z term) also vanishes while
2nD<(n—1)(2—D)d. Hence both the excluded volume ef-
for d< 4 fect and the hydrodynamic interaction are irrelevant when
2-D the dimensional lower bound satisfies 244/1)>D for n
=2. This is denoted as a freely draining Rouse type behav-

_kB_T 1 f ior. Moreover, the monomer diffusion coefficient is irrel-
¢ (Nb)? P evant for largeN when d<4/(2—D). If D>[2(d—2)]/d
andv,=0 (O solventy, the diffusion coefficienDy of a
X fp @|2+D7db72+d(27D)/2,Un|(n72)D7(n71)d single membrane is reduced to the well known nonfree drain-
7o ing Rouse-Zimm result
4
X p(h—1(@-D)di2=nD|  fqp d>ﬁ- (9 Dy= 7]:;31:2 N~ (@2-1@=D) (). (11)

The above equation is true for aby>0. Hence making the

’ ! ohd el In addition, in good solvents, the excluded volume effect
selectionNb=1 yields the diffusion coefficient

sets in, and>1. If we takeN— o, the membrane diffusion
KeT coefficient become® 4= (kg T/ 7o C{—Z) |_\|<d/2— 1><D_ —_2>f b(2).
Dg=—1q=5 N@2-DO-2)f (y=1 7) However, in good solvents, the diffusion coefficient displays
70l a power-law dependend2,~N~“d. We require thaff is
determined by its argument through a power law form. As-
for d>i suming that the scaling functiohy(Z) scales asZV, we
2-D recognize that the scaling relation of the diffusion coefficient
obeys a relationship such as
kTN 7, (Y.2) for d>— KT
T L IPPYT 2-D° _ B
’ 10 Do
Here, for our convenience, we refer taZ as X N2 D727 Lot (2= DD =2)JInD=(n=1(2=D)d2],
vl TINTDT(n=1)(2-D)dr2 and to Y as (12)
(§O/ 7]0)' 2+D—dN2—(2—D)d/2.
The scaling functions in Eg(10) contain the hydrody- wherewy is a new dynamic scaling exponent.
namic interaction and excluded volume effect. This deserves To solve the dynamic scaling exponent, we consider a
more exploration. Recall that, in E¢#.1) of Ref.[5] when  membrane confined between two infinite planes with a dis-
the internal dimensiomnl>4 and in the limit of large bead tancea apart(see Fig. 2 The scaling relation of the confined
number in each dimensidd— o, both the excluded volume membrane must be reduced to the unconfined resuli as
effect and the hydrodynamic interaction are irrelevant for the—oo, assuming that there exists only one characteristic
polymer case. In fact, in our membrane system, the situatiotength for the membrane diffusing a distariReThis charac-

061207-4



DYNAMIC SCALING THEORY FOR A TETHERED.. .. PHYSICAL REVIEW B3 061207

teristic length enables us to obtain the scaling relation for the 2v—(2—-D)
confined membrane id dimensions, i.e., Wl_nD—(n—l)(Z—D)d/Z'
Dd:kB_TN—wa|2—d So we obtain we obtain the characteristic length

7o

X (] ("~ 2D = (1= DA(¢/2-1)(2-D)~wgJ[nD~ (N~ 1)(2-D)d/2] Rg~Npl2r~(2-D)znD=(n=1)(2=Dd] (13

X gp(a/R) wherev=(2—D)/2 plus a correction terrf6].

Next we can investigatay. We first proceed with the

for d<4/(2—D), wheregp[ (a—)/R=]=const. static definition ofRg and find that the scaling law for the

At this stage, we can truncate the diffusion coefficient to aconfined membrane id dimensions in the limita/Rg— 0
lower dimension. In the limie/R— 0, the scaling behavior becomes
of the confined-membrane is the same as the scaling behav-
ior of the unconfined membrane inl{ 1) dimensions. As- Dy~N~
suming that we have a power law form for the scaling func-
tion gp(q) asq”. The same results are obtained by assuming X N™W2"y
that R is the static radius of gyratioRRg, or a dynamic
length Rp defined by the Stokes-Einstein relatidDg Equating the powers dfl andv,, in d-dimensionalD 4 with
=const><(kBT/770)(1/R 2). This consideration gives us the the related powers ind(—1)-dimensionalDy4_;, we then
static radius of gyratlorIR2 ~1PL27PzW1 where reduce the diffusion coefficient into

wgy L(@/2-1)(2-D) = wgl/[nD~ (n~1)(2-D)d/2]
n

w2[2v—(2—D)]/[ZnD—(n—l)(Z—D)d]

Dy_,=const (kgT/70)] 2—DN—wd,1(vn| (n—2)D—(n—1)(d—1)){[(d—1)/2—1](2—D)—md,l}/[nD—(n—1)(2—D)(d—1)/2],

where the relationships fined in a very short range, say a few monomers. In other
words, the range of the hydrodynamic interaction is of the
wg-1= Wg+Wov (149 order of the polymer tube diameter. The translational diffu-

sion coefficient for a Rouse chain is proportional to the in-
verse ofN, i.e., w;=1 for n=2 andD =1. Therefore, put-

(d12-3/2)(2-D)~ wg s {ne more general poundary condiion for the membrane case
nD—(n—1)(2-D)(d—1)/2 g y

(d/2—1)(2—D)— wy 2v—(2-D) w;=nD—-n(2-D)/2 7

= — — — —W2 — — —
nb-(n-1)(2-Djd/2 nD—(n-1)(2-D)d for arbitraryn andD. Finally, we substitute Eq17) into Eq.
(15  (16) and obtain the general dynamic critical exponent

and

are satisfied. By eliminating/, from the previous equations, wy=(d—2)v (18)
it may be verified that the first-order difference equation for d '

wg Obeys the relation The above equation covers the polymer result of AF. In a

(d—3)(2—D)—2wq_; tv;/fq-gim%nsioqa:jextergal sp?\loef 0 and the diffusion co-
2nD—(n—-1)(2-D)(d—1) efficient D, is independent oN.

B (d—2)(2—D)— 2wy B. Intrinsic viscosity
2nD—(n-1)(2-D)d The other interesting physical quantity for a membrane
(wg-1—wq)(2v—(2-D)) solution is the intrinsic viscosity, which for a single mem-

(16) brane is calculated by linear response theory as

~ »(nD—(n—1)(2-D)d)

The above equation shows a recurrence relationship between [7]= %J' dt(J(1)J(0)), (29

wq and wy_ 1. Continuing this iteration process, the recur- B! 70 Jo

rence relation is terminated at; . Recall that the boundary

condition w; should be able to reproduce the polymer resultWhere N, is Avogadro’'s number and! is the molecular
whenn=2 andD = 1. Typically, in the polymer case and in Weight of the membrane; the related momentum flux tensor

good solutions, the hydrodynamic interaction range is conis defined byJ(t)=— kBTf0 deFX(x t)[ o/ ory(x,t) F.
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general, the scaling relation for the intrinsic viscosity may beln higher dimension, due to the same argument suggested for

obtained by substituting Eq7) into Eq.(19) and leads us to
the scaling functions

|dp—d(2- D)/2 7] pD+(2-D)(2—d)12

Un|(n2)D(nl)db(nl)(ZD)dIZnD)

f d<—4
or 5_D

NAgO |2+D

"My b2

do 2+D—dp-2+d
—dp—2+d(2—-D)/2
><f,, Nb, 770| b )

vnl(n—2)D—(n—1)db(n—1)(2—D)d/2—nD ’

4
for d>ﬁ (20
By settingNb= 1, Eq.(20) is simplified to
[ ]— A | dd(2-D)i2g AY12) for o|<i
K ’ 2-D
Nalo 5 py2 4
=M 0I N<f,(Y,z) for d>2—D' (21

the diffusion coefficient, both the excluded volume effect
and the hydrodynamic interaction are irrelevant. Hence we
obtain the freely draining Rouse behavior forsolvents as

Na o 5,
[n]:ﬁ%ﬂ PNZf,(0). (22)

Conversely, in lower dimension and & solvents, Eq(21)
reduces to

N
[7]= 37 19NY2 0% (0), (23

whenN—o. This is the general Rouse-Zimm result.

For good solvents[ ] displays a different power law
form from N. We require the intrinsic viscosity scaling rela-
tionship[ 7]~N3q, i.e.,

3N3wd

[77]—

X (v, (n—z)D—(n—l)d)[sad—d(z—D)/z]/[nD—(n—1)(2—D)d/2]gn_

Here wq is a new dynamic scaling exponent of the intrinsic
viscosity.

We can re-express thg, part in terms of a power law
form q". Then, the intrinsic viscosity becomes

[ 7]=const< (N, /M) 3p30g—Wav ¢ | [(1-2)D~(n-1)d][3wg—d(2~D)/2J/[nD~(n—1)(2~D)d/2]

« [374~d(2-D)/2)/[nD~ (n~1)(2-D)diz] ~wy[2v~(2-D)}[2nD~ (n~1)(2-D)d]
o .

This enables us to determine the recurrence relationships of

the powers

35d,1=35d—W3v (24)

and
3wy_1—(d—1)(2—D)/2
nD—(n—1)(2—D)d—1)/2
_ Bwg—d(2-D)/2
" nD—(n—1)(2—-D)d/2
2v—(2—-D)
“YnD—(n—1)(2-D)d’

(29)

Following the same argument in Sec. IlIA, we obtain the

3w;=nD/3—(n—4)(2—-D)/6, (26)

with the requirement of Rouse-like behavior wHey is re-

duced to the polymer case in good solvents. We therefore

have the general dynamic exponent
35(1: dv. (27)

Perhaps the most striking feature is that when the external

dimension is larger than one, both the dynamic exponents in

Egs. (18) and (27) are independent oh and the internal

dimension. Note, in particular, thaiy (or wy) is the same

for polymers and membranes in dimensib#a 3.

C. Dynamic structure factor

The experimentally measured coherent neutron and light

remarkable boundary condition for the membrane case as scattering signal intensities, which carry information perti-
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nent to density-density correlations in membrane solutions, Now we can evaluate the scaling behaviormf(k, »).

are proportional to the spectrum structure factor We first setN=L/l and the Fourier transform of the density
‘ distribution is expressed as
S(k,w)=2 Re |imf dt(p(k,t)p(—k,0))e (ltat 1 ((bP
¢—070 k,t =—J dPx’ exiklb®=22.R" (x’ t")].
where the density distribution is defined by the Fourier transUsing the time scale relationships
form of the configuration vector p(IZ,t) K.Th(2-D)2
D 5> >
=(1/LP) S5 dPx exp(ik - R(x,t)). Using now the correspon- o't =o't B—|d_ = wt
dence between the structure factor and the diffusion coeffi- o
cient, the half-width of the Lorentzian distribution of the gng
structure factor
i N _ ” go 2+DR—2

S(K,0)=2 Reiw+k2Dy(K,0)] Y|p(K0)D (29 w'=wI1*7b
for a single membrane density gives the generalized diffuwe arrive at the following scaling relations of the dynamic
sion coefficient. Herd=|k|. structure factor as

|
S(K, o) 70 pD+(2-D)(2—d)/2

d
=2 RE{ i+ kzﬁb(ld"z)(DZ)fD( kIb(P—2172 , Zol b(D-2d12 Ny

d—2 Dr2-d
7ol gl {o |

(|p(k,0))
-1 4
vnl(n—2)D—(n—1)db(n—1)(2—D)d/Z—HD)] for d<—D

=2 R{ i+ k2| DbDfD( k|b(D72)/2,a)£|2+Db72,Nb, @|2+Dfdbd(27D)/272,
gl 7o

-1
Unl(nZ)D(nl)db(nl)(ZD)dIZnD)l for d> 4 .

By making the selectiobh=N"1, the above equation permits the construction of a general scaling forBfor

. kgT DD {o 4
_ B -Dpn- (2-D)2 . 50 124Dp2 T
Dy(k,w) Z "N~ "fp| kIN ,kaTl N<,zZ| for d>2—D
kBT 7]0 4
_ (d/2—1)(D-2) (2-D)I2 dnjd(2—-D)/2
7ol —N fD(kIN ,kaTI N ,Z | for d<2_D. (31

Here the factolY has been ignored d¢—oc. For long wavelength, low frequency, afdsolvents, we can see that the result
of the Rouse-Zimm behavior in EQ10) is reobtained. In good solventg>1, we know that the membrane dimension is
characterized by the crumpled dimensRg in Eq. (13) instead of by the unperturbed dimensigff 2. Hence we obtain
the generalized diffusion coefficient as

Dd(R,w)=LB;,rTsz<kRG,wﬂRg). 32)
7oRG kgT

Conversely, in the long wavelength, low frequency regime, B is recovered. For a large momentum transfer
kIN®~P)2> 1 and only the local property can be detected. In this respect, the generalized diffusion coeffiientépen-
dent. This results in the well known simplified dynamic scaling relationship for the generalized diffusion coefficient as
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([ keT 70 _q4 )
B 0 - -0
("’kBTk oo
N kBT 1o 4
— —— 7>1 —_—
Dd(k,w) 7 ka2<(1)k Tk ) } for d<2—D
kBT 7o d
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kg T 3
iok(z_D)Q'(Z_gD)/sz,l(wé—?rkD_z'ZD), v,=0
kgT 4
giok@D)’Zl(“Dﬂsz,z( kngD 2|ZD) Z=1 ¢ for d>5—. (33
kgT o
2B ((2-D)2(2-3D)2 , 20 D-2)2D o
\ o “keT )

When we check the above equation, we find that, in a Following the same procedure in Sec. Il, we then perform
lower dimension, the dynamic diffusion coefficient is a func-the nonzero membrane concentration Kirkwood diffusion
tion of the solvent viscosity. However, in a higher dimen-equation
sion, the dynamic diffusion coefficient depends only on the
membrane bare friction.

IV. NONZERO CONCENTRATION

In Sec. IV A the dynamic scaling theory for a single mem-
brane dissolved in solution is extended to nonzero concen-
tration. Them-membrane free energy is proposed and the

d o LD LP 5
— > f def dPx'—
ot ap=1Jo 0 SRy

renormalized draining parameter and excluded volume keT o , p(z)k T . s
strength are introduced. 1® solvents, only one renormal- X|— =187 (X=X") Sapt T(RA(X) —Rg(X"))
ized draining parameter is taken to describe the transition 0 0

from nondraining to free-draining behavior. However, for

good solvents, based on the effective medium argument, S SF

both the renormalized draining parameter and the excluded X —/+— ] P=6"(x—x"), (39
volume strength are required. The arguments presented be- oR, OR,

low deal mainly with the behaviors of the specific viscosity
and diffusion coefficient.

For a membrane solution with a nonzero concentration,
the membrane-membrane interaction starts to set in. We gen-
eralize the one membrane free enerq. (1)] to the hereF =F,,/kgT. Moreover, applying the scale transfor-
m-membrane free energy, and the intramembrane and mt?gatlons in Sec. Il to the free energy in HG4) leads to the
membrane excluded volume effects are included. Hence t pmogeneity relation
dynamic scaling relationship of the nonzero concentration
membrane solution follows an extension of the preceding
work on the single membrane free energy. We first write

down themmembrane free energy &%7], Frn(Re oL log) =F (R, ,Nb,1p,

)2 X | (N=2)D—(n—1)d}y(n—1)(2-D)d/2-nDy

L3 [

1

kBT 2 IXa (36)

n—-1

v 2 iH de.H S (R,L(X)) — Ra(x)).

a#,B

0

(39 and the time scales obey the scaling relationships
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. keT p2kgT
td T,RQ,L,l,vn,i,po °
oR, Lo Mo
5 . go |D+2*d 4
Y ’ (n—=2)D—(n—1)dR(n—1)(2—-D)d/2—nD q >% —
=t"® 5§;,Ra,Nb,l,vnl b ,1,770 bD+(2—D)(2—d)/2_h< for d< 5
o

F‘é/’Nb,l'vnl(n—2)D—(n—1)db(n—l)(2—D)d/2—nD,1'@|d—2—DbD—(2—D)(d—2)/2:h> for d>i. (37)
“ Lo 2-D

1
57

Y
Py,

R

Here ® represents the evolution equation of the second ternfinite concentration membrane solution. Effective medium

on the left hand side of Eq35). Therefore, Eqs(36) and  arguments are invoked for the solvent influences. Hence the

(37) provide us with the scaling variables for the dynamicdraining parameter and excluded volume effect are screened

scaling functions. by membrane-membrane interactions and membrane-solvent
With the above argument of the homogeneity relation, wenteractions.

are ready to discuss the dynamic properties. In the finite The specific viscosityys, can now be generalized, due to

concentration membrane solution, due to the membranehe linear response theory, to

solution and membrane-membrane interactions, hydrody-

namic interaction sets in and then the draining parameter is

required. This draining parameter shows quite a different be-

havior forc=0 andc#0. For example, in the dimensiah

>4/(2—D), we useh=Y for c=0 andh>=Y*l for c#0. Nsd C) =

Conversely, in the dimensiod<4/(2—D), we chooseh

=Y lforc=0 andh =Y for c#0. Recall that, in the work

of MD, the time scales separated &y 4 are not valid when

the polymer scaling relationship is extended to a membrane

solution with non-zero concentration. whereV is the system volume and the momentum flux tensor
g . . . . D -
A. Specific viscosity is defined by J(t)=-— kBT(I/b)DfE,Nb) dPs'R!(s',t")

In this section, we study the dynamic scaling behavior 0f5/(5§;y)Em(§é,L’,| ",vp). In this scenario, the scaling
the specific viscosity fo® solvents and good solvents in a forms for the specific viscosity become

KT 7oV fo dt(J(t)-J(0)), (39)

{o - o
754 ©) = - I2+db_2f77$p m,Nb,p | ("~ 2D~ (-~ Lidp(n-1)(2-D)di2-nD 0 |D+2-dpy~D~(2-D)(2-d)2 /2 ~d |

\% 70

f d<—4

or >°D

I 70
_ g (n—2)D—(n—1)dp(n—1)(2-D)d/2-nD /0 1d—2-DRD—(2—-D)(d—2)/2 d/2) —d
Vb<2—D>d/2fﬂsp( m,Nb,v | b , §o| b , Vb4 )
for d> 4 39
or ﬁ ( )
|
We can now introduce the membrane concentration via the Na 2 D2 c 4
volume relation /V)(b¥4~1)9=c(N,/M)(b¥4 19 and =——|INZ"P) Fed C—*,h>,Z for d>—2_D,
setNb=1. Then Eq.(39) is reduced to A 0 (40)
Nyl C) = @%IZ*DNZf (i**h< ,Z) for d< 4 where the critical concentrationcy is denoted as
c 70 Ma s\ cg 2-D (bY41-1)9M,/N,. This characteristic concentraticsf is
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recognized as the membrane beginning to interpenetrate insrength for a single membrane dissolved in the effective
solvent, and the draining parameter which measures whemedium generated by the solvent and all the other mem-
the hydrodynamic interaction starts to appear. In the presemitranes. Hence, by adding a small amount of membéan®
case, we require that the power Nfin the draining param- the solution, the draining parameter is changed from
eter is positive whe # 0. However, as the solution concen- h((c) to h/(c)g,(éc[ 7]). Then the concentration dependent
tration is decreased to zero, the draining parameter shows amaining parameter obeys the statistical relation, i.e.,
inverse behavior, i.e., the draining parameter approaches(c)=h (c+ éc)=h.(c)g,(dc[7]) or g,((c+ c)[7])

zero asN increased. This means that the powerdNah h; =g,(c[7])gn(5c[ 7]). The general form of the solution of
are negative. g, can be expressed ag,(c[7])=e *!” wherea is a
positive constant. We then have the specific viscosity
@ solvents 754€)/C= Lo/ o) (NAIMQIZTONZE, (e eel7)). For a

For a® solvent, we mean that both the intermembranesufficiently large membrane and at very low concentration,
and intramembrane bead-bead interactions vanish. Typicallyhe conditionh<e“°[ 7l>1 suggests a power law form for the
only hydrodynamic interactions are screened in this solutionscaling functionf, (h,e~ 7))~ (he~*l")%s wherew

. Ngph € ( ’ 5
One of the synthesized tethered membrane, for example,
the cross-linked polynethyl methacrylate[19,29. Since
acetone and toluene, etc, have been used a® dwvent for
poly(methyl methacrylate[30], and they could be a good

I§ determined by the requirement that in the asymptotic re-
gime 7g{c)/cl._.o=c[ »] is independent of,. Therefore,
we find thatws= —1, and the specific viscosity becomes

choice asd solvents for the cross-linked pdipethyl meth- 7 C)=C[ n]en], (43)
acrylatg. Settingv,=0, the scaling relation for the specific
viscosity is simplified to This case shows a non-power-law form derived from the

scaling function, and is valid only for a large membrane.
7s4.C) _ é %I“Dsz ~ hol for d< 4 Expanding the exponential part in terms of the small concen-
c 70 Ma 7sp\ ¢ o) 2-D° tration, we finally obtain the limiting lawpg{c) =c[ 7](1
(41 + ac[ 7]+ 0(c?)) for the specific viscosity. Experimentally,
o o ) ) « is identified as Huggins coefficient.

At infinite dilution c— 0, the only relevant variable is the Now we turn to consider the higher dimensional case, i.e.,

draining parameten, . Moreover, in the limitN— orh; 4~ 4/(2—-D). By settingv,=0, the specific viscosity be-
—, the self-friction {, becomes irrelevant. This ensures omes

that Pep obeys the scaling frorﬁnsp(o,q ,0)~qg"+ while w, is

determined by the requirement that(0)=c[ »] is inde- ”S_P(C) =%|dN<2*D>d/2f (i h 0) (44)
pendent of{,. The appropriate choice af, is —1. Hence c Ma sl c5 ")
we have

For a nonzero concentration solutioo—0 and large
bead numberN—o, or hy—o, the specific viscosity
obeys the scaling form, i.e,, nsp(c)/c|cﬂo=[1;]
=(NA/MA)IdN(2*D)d’2h‘>NG. The limiting behavior is ex-
wherea,,= const andcg =cg/[ 7]. This is the Rouse-Zimm pected to be proportional ta,/7,, and hence the powev
result. Note thaty and[#] are interchangeable. is equal to—1. Therefore, we find that the Rouse result
As the membrane concentration increases, the hydrody-;]=a,/cj is recovered.

namic screening effect starts to set in. There are two renor- Now we turn to consider the higher concentration mem-
malized screening parameters such as the draining strengiiane solution. Substitutingn,(c) into Eq. (40) leads to
and the excluded voIL_JmQ effec.t. W_e ChOd‘S@_C) as the ﬂsp(C)/CZ(NA/MA)|de(27D)’2f7, (h>g,,(c[77])) where the
screened hydrodynamic interaction, i.@s{c)/c=({o/10) definition of hy(c)=h .sp .

>+ D22 ) ) y9,(c[7]) is employed. In particular,
X(NA/MA)IZTENE, (h(c)). Comparing to Eq(41) leads  he poundary ‘condition a,(c[7]) atc=0isg,(0)=1. As
to the general  expression 7g{c)/c=({o/7m0) the membrane concentration approaching infinity, the en-
X(NA/MA)I2+DN2f7]Sp(h<g7](c[77]))_ This defines the tanglement effect can be ignored, andpsy(*)
draining strengthh,(c)=hg,,(c[ 1), which describes the %C(NA/MA)IdN(Z’D)d’Zf,]SP(O), i.e., g,()=0. Hence the
strength of the hydrodynamic interaction. However, thegeneral solution has the unique form(c)=h e—a'clnl
boundary condition og,(c[ 7]) remains to be determined. \yhereq’ is a positive constant. The specific viscosity in the

At ¢=0, we require thah(0) is equal toh, i.e., g,(0)  higher dimension then satisfies the following scaling form:
=1. Conversely, ag—x, 775, reduces to the Rouse result,

i.e., 7s{*)~Cc(Lo/ 7o) (Na/Ma)I?"PN? Thus we have 7sdC€)  Na

9,(=)=0, ie,f, (hg,(=)~1. ¢ Mys
With the preceding boundary conditions, we are more in-

teresting in the general form @f, . By using the argument For a sufficiently large membrane and dilute solution, the

of an effective mediumh(c) is treated as the draining condition h>e‘“'°[”]>1 implies a power law form for the

NA an
=a |dN2_d(2_D)/2:_, 42
(7= . @2

|dN(Z—D)d/Z’fnsp(h>e_a'c[7/])_ (45)
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scaling functionf”Sp(h>e‘“/°[’7])~(h>e‘“/°[’7])‘”7, whereas
w- is determined by the requirement similar to Hd3).
Consequently, we realize that the power is equal to—1,
and the specific viscosity becomeg,(c)=c[ 7]e* 7). In

the higher dimension, we also evaluate the non-power—la\EE
form for the scaling function. By expanding the exponential9.i

part in terms of a small concentration, a similar limiting be-
havior of 7¢{c) in d<4/(2—D) is obtained aszgjc)
=c[7](1+a’c[7]+0(c?)).

Good solvents

PHYSICAL REVIEW B3 061207

ﬂsp(c)

. (48)

=[n]l=a;/c*,
c—0
is in good agreement with the result of polymer theory. Due
the properties of g, i(c[7])=exp(—ac[#»]) and
(c/c*)=g,i(c[7]) when c—x, 5g(x) should
be proportional to {,Na/7oMA)I2"PN2. Hence theaq;
are positive constants. Obviously, the limiting
of specific viscosity is then reduced topg{c)/c
=(gONA/nOMA)IZ*DNZf,,Sp(h<e’“1°[’7],Ze’aZC[’?]). If both
he «°l7) and ze™ *2°l7) are much larger than 1, then, in

law

In good solvents, both the hydrodynamic interaction anddood solvents, we can ignore one @f. Thus we have the

the excluded volume effect are screened, hgandvn are
renormalized. In this context, the general expression of th

specific viscosity in good solvents is then modified by the

concentration, and is expressed as

750 C) _ {o Na

c 7o Ma

)

(46)

C C
a,z ,Zg,,vz C—*,Z

when d<4/(2—-D). In the above equation, the intermem-
brane excluded volume effect is presentedyipy andg,, .
Similarly, the intramembrane excluded volume effect is dis
played inZ. As usual, applying the power law form to each
individual concentration correction terms g,
=9,,l(c/cg)Z"], wherei=1 and 2, and under the condi-
tionsZ>1 and (1¢})Z"s~N3", we obtain the power of the
argument ofg,,; as

_ 3v-d(D-2)/2
" nD—(n—-1(2-D)d/2

Wg

In addition, in good solvents, the above specific viscosity

becomes

c

76€) _ o Na 200y <
C*

c 70 Ma

)

(47)

wherec* is the characteristic concentratjdh and is equal
to

2% _ Cc _
f”sp h<g7],l C_* !Zgn,z

(Ma/Np)IINT3Y

X (] (n=2_D—(n=1)d)~[3v=d(D—2)/2}/[nD—(n—1)(2-D)d/2],

exponential relationship of the nonzero concentration spe-

é:ific viscosity

=[n]lexp(a;c[ 7]—wgasc] 7]), (49

75.©)
c

where  wg=[dv—(2—D)d/2]/[nD—(n—1)(2—D)d/2].
The Huggins coefficienty; —wga, involves the hydrody-
namic interaction and the excluded volume effect. Neverthe-
less, the related coefficientg cannot be solved by scaling
theory. The limiting cases in Eq&48) and(42) are valid for
a membrane solution at low concentration and large mem-

branes.
Now we examine the specific viscosity when the external
dimension is larger than 4/(2D), i.e.,

754€) _ Na

. c
dn(2—D)d/2
c —wm,N f’?sp(cg ,h>,Z)

NA Lan2-Dyai ¢ ¢
:M_A| N(2-D) 2f,]Sp hg,.1 g,z 29, g,z .

(50

In the present case, the demarcation between dilute and se-
midilute behaviors in good solvents occurs at a characteristic
concentration, i.e.c* ~MAN~9 which reflects the per-
turbed membrane dimension. Hence the power law form for
g, follows fromg, =g, i[(c/c§)Z"10] fori=1 and 2, and
Z>1, with the requirement of cj=(Ma/Np)
X[1INd@=D)2=d]=1 gng (1£3)ZV10~N~92"%) we find,

in particular, thatw,q is equal to[d(v—(2—D)/2)]/[nD
—(n—1)(2—D)d/2]. Note that the bead number in each
dimension isN. The total number of beads of the tethered
membrane iNY. So the demarcation concentration is differ-

In particular, we adopt the zero-concentration boundary con€nt from the polymer solution. The specific viscosity is then

ditions asg,,1(0)=g,»(0)=1. In order to recover our pre-
ceding infinite dilution result, the limiting law of specific
viscosity becomes 7sC)/clc—.0= (Lo 10)

X(NA/MA)I2+DN2f,75p(h<,Z). As N—o and at infinite di-

lution, ?‘,7 (h(,Z) can be expressed in terms of
sp

(1/h<)f,7$p(Z), whenh>1. When the excluded volume ef-

fect is strong, thef ;Sp(Z) term approaches the power law

form Z%s as Z>1. The final result of the limiting law of
specific viscosity, i.e.,

reduced to nshC)/C
=(Na/MQINC P12 (h)g, y(c/c*),Zg, A(c/c*))
which  recovers the infinite dilution result[ 7]

=[nshc)/c]lc-o=(NA/MAINED2E, (h),7). In ad-
dition, we choose the boundary conditiogs,(0)=g,, »(0)
=1. At infinite dilution, [ 7] is proportional to/,/ 7o, as we

obtained in Sec. IlIB, which results infnsp(h>,Z)
=(1/h>)f;]sp(2) when hy>1. When the excluded volume
effect is strong, ie, Z>1 and f;sp(Z)
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ocz(dr=2)InD=(n=1)(2=D)d’2] " it is verified that[7] is not centration dependent diffusion coefficieDg(c) = (kgT/{p)
equal toa//c*. Note that the interchangeability scaling be- X(N~PNP)fp(h( Z,clcg). o

havior betweerc* and[7] is no longer obeyed in higher In O solvents, the drgmmg .paramete.r is definechpynd
dimension. Clearly, thg,, ;(c/c*) are obtained by invoking the reduced concentratiaricy is proportional toc[ ]. The
the effective medium arguments leading @, ;(c/c*) diffusion coefficient is then simplified t®4(c)=(kgT/{g)
—g,(c[7])=e " The requirement, at very high X(N~P/IP)fp(h,0¢/cy). As usual, following the method
membrane concentration, of ) of solving ng{c) in ® solvents provides us the diffusion
%c(Na/M ) INUZ=D)2 indicates thatx are all positive. coefficientDy(c) = (kg T/{o) (N~ P/1P) fp(hie™ *°L7]) where

Consequently, we have the concentration dependent expre@-IS @ positive constant. Hence, in the limiting case of a high
sion of the specific viscosity  pgfc)/c concentration membrane solution, the Rouse behavior

D)% ! L Dy()=(kgT/£o) (N~ P/IP) is recovered. Moreover, the re-
_ dnjd(2—D)/2 alc[ 7] alcl 7] _ d Bl/6o
(Na/MA)I"N fﬂsp(h>e 197, Ze7 %257, More quirement thaD(c) is independent of, for the condition

over, when botthye~ 17 andZe~ *2¢L7) are larger than 1 he~““l7]>1 results in the asymptotic behavior of the dy-
we can simplify the specific viscosity intongc) namic diffusion coefficient as

— ¢[ 7]e+<L7] which suggests that
kgT —

D.c)=a I2—dN(2—D)(2—d)/2€—aC[77]. 52

dv—2 , a(C)=ap— - (52

nD—(n—1)(2—D)d2 *?

kiyj=a1—
H 1
Conversely, at zero membrane concentration, the Rouse-

Herek;, involves the contribution from both hydrodynamic Zimm result

and excluded volume screening effects. T
D4(0)=ap B [2-dN(2-D)(2—d)/2 (53
B. Diffusion coefficient 7o
In this section, we consider the diffusion coefficient for ajs obtained.

tagged membrane in a finite concentration membrane solu- The other interesting situation is the membrane dissolved
tion. According to linear response theory, we now introducein a good solvent. In this scenario, we may re-express the

the diffusion coefficient for a tagged membrane as diffusion coefficient as Dg(c)=(kgT/&o)
1 - X(N~PNP)fp(he™ 7], ze *7) = (kg T/{)
Dd(C)=—f dt(V,(t)-V,(0)), (51)  X(N"P/IP)fp(q,2), where@; and @, are positive con-
dJo stants. In the limitt— 0, the scaling function is independent

_ _ of ¢y, and the asymptotic form dofy(q,z) is expressed as
where V(t) is the veloch[/) of the cepter of mass of the qf5(z) for g>1 and the power law form fof((z) is z*
tagged membrane, (17) g d°x(d/dt)R,(x,t). When the wherez>1. SinceDy is independent of, and is propor-
external dimensiom is smaller than 4/(2 D), we employ tional to N~ (9=2” e obtain the diffusion coefficient at
the time scale”=t(kgT/{o)[b?/(12*P)] and obtain the con- infinite dilution as

Dy(c)=al k;‘T |2=dN (2= D (g, [(1=2)D=(n=1)d)[(2=d)(»=(2=D)/2J/[nD~(n—1)(2-D)d/2]
0

« — (2—d)(v—(2-D)/2) _ £4
exp ~ et S5 = (- 2—pyar 2 | 64
|
where aj, = const, h<e*;1C[77]>1 and Ze 27> 1. Obvi- Now we consider a higher concentration of membrane

ously, expanding the above equation, we get the secongplution. In this situation, both the hydrodynamic interaction
virial correction (Higgins coefficient VH=51+{[(2—d)(v and excluded volume effect should be screened. The validity

—(2-D)/2)J/[ND— (n—1)(2—D)d/2]}a,. The diffusion c?r;i:[tlo]ns for membrane solu.tgn at high _c_oncentratlon are
coefficient is then modified to e “i%7<1 wherei=1 and 2;a] are positive constants.
Hence we are able to employ the renormalized parameters
D ¢(€)|exp=Da(0) (1 —kyc[ 7]+ O(c?)). 55 h(c)=hgp1(c[7]) and
dl )|exp a(0)( Hel 7] (c9) (59 vﬁ(c)l(”jz)%E(”’1)dN”D’(”’1)(2’D)d’2:ZgD (c[n]). The
The above equation is valid for low concentration oreffective excluded volume strength and draining parameter
he i<y, no longer depend oN. Therefore, we require the power law

061207-12



DYNAMIC SCALING THEORY FOR A TETHERED.. .. PHYSICAL REVIEW B3 061207

form for gp i(c[ 7]) =ag, i(c[ 7))V whereagD ,=const, and thev; are chosen in such a way that the effective number of the

monomers experiencing a strong excluded volume effect and hydrodynamic interaction is indepeMdntather words,
h((c) obeys a power law form such as

w
dpd(2-D)/2-17[dv—d(2-D)/2)/[nD~ (n—1)(2-D)d/2] H

Na
h — |
<a91 MA
Sincec[ 7] is proportional toc/cj ,h(c) is independent oN. Consequently, the powev,; is equal to3([4—d(2—d)]/(d

—dv)) and the screened draining parametgic) is denoted as

s cN (1/2[4—d(2—d)]/(d—dv)
. _0)|2+D—d( A|d) (vnl(n—2)D—(n—1)d)(1/2)[dv—d(2—D)/Z]/[nD—(n—l)(Z—D)d/2][4—d(2—d)]/[d—dv]‘
D1\ 79

Ma
On the other hand, the effective excluded volume strenggh)|("~2)P~ (1~ 1dx NnP=(1=1)(2=D)d/2 can he expressed in terms
of the power law form

W12

23, ,

CNa dnj(d/2)(2—D)—1 | 7[dv—d(2—D)/2)/[nD—(n—1)(2—D)d/2]
M 1N Z

Here we require that the effective excluded volume strength is independdhtTdferefore, we have the power

nD—(n—1)(2—D)d/2
d—dv

Wio=

Substituting these results back to the special viscosity in Sec. 11l B leads us to the specific viscosity

—(dv—2)/(dv—d)
7sd€) 1 a[du—(z—D)d/2]/[nD—(n—1)(2—D)dIZJ%|dN2 CNA|d)
9.2 M M
C agDyl A A
X (] (1=2)D=(1=1)d) = [(dv—2)/(dv—d)][dv—d(2-D)/2J[ND~(n~1)(2-D)2], (56)

Furthermore, the power law form for the diffusion coefficieBty(c), in a good solvent, is simplified to
(kgT/Zok)I "PN~Pqz", whereq=h_(c) andz=v,(c). With the requirement oD4(c) being independent of, in good
solvents, we have the final result of

kgT CNp
Dd(c):agD’lag(Syfzd)(vf(zfD)/2]/[nD7(nfl)(27D)d/2] 77 |szD( |
0 A

X (] ("~ 2D~ (n=1)d) ~[D+ (2= d)w]/(dv—d) x[dv—d(2-D)/2J[nD~(n—1)(2-D)d/2], (57)

) —[D+(2—d)»]/(dv—d)
d

Now we consider the diffusion coefficient for dimensidn when entanglement effects are ignored. Hetas a positive
larger than 4/(2D), and adopt the time scald’ constant. The requirement @ y4(c) being proportional to
=t(kgT/70) (0@~ P2/1)4 in the linear response theory: lo' produces the asymptotic behaviorDg(c)
=(kgT/{o)l "PN~Pe~«'dl7l Consequently, atc=0, the
freely draining Rouse type result
kT v c
Dgy(c)= —127IN(@2-1(D 2>f(h>,z,—*). (58

70 Co T
In the above equation, in® solvents, the draining Dy4(0)= %VDN_D (60)
parameterh, and the reduced concentratiaricg o c[ 7] 0
in Eq. (58 are expected. We therefore find that the
diffusion coefficient can be reduced toDy(c) is recovered.
=(kgT/ 770)|Z*dN(d’Z*1)(D*2)fD(h>e*3'°[’7]) which displays On the other hand, in good solvents, we modify both the
the Rouse behavior hydrodynamic screening and excluded volume strengths by

the concentration, and re-express them in terms of a power
Dy(o0) kB_T|27dN(d/271)(D72), (59 law form. Then the diffusion coefficier24(c) is denoted as

7o (ke T/ 70)| 2 INW2DO=2)f (e~ 1¢l7] 7~ 2l 7)) where
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a; and«; are positive constants. As—0, Dgy(c) is proportional toggl, the scaling functiorf5(q,z) can be expressed as

qfp(z) for g>1, while

fI/D(Z)ocZ[D—(d—2)v]/[nD—(n—l)(2—D)d/2] for z>1.

Finally, the power law form for the diffusion coefficient becomes

Dy(c)=aj, kT | —DN—(d—Z)y(vn| (n=2)D=(n=1)d)[D—(d=2)»}/[nD~(n=1)(2-D)d/2]
0

(d=2)»—D

-

-
ag

xexpr —c[ 7]

whereap,=const. The expansion of E¢61) in terms of the
small concentration leads to the limiting law

Dy(c)=Dgy(0)[1—k{c[ 7]+0O(c?)] (62)

where the Huggins coefficient is

. (d—2)»—D

— !

K= a1~ nD—(n—1)(2—D)d/2 2

V. CONCLUSION

T nD—(n—-1)(2—-D)d2“?

] (61)

tration membrane solutions. In this respect, the dynamic
scaling behavior of the tethered membrane depends on two
fundamentally important effects, namely, the hydrodynamic
interaction and the excluded volume strength@isolvents,

only the hydrodynamic interaction sets in. However, in good
solvents, both the hydrodynamic interaction and the ex-
cluded volume effect need to be considered. These two ef-
fects are renormalized when the membrane concentration is
increased. The screening effect is due to the coherence length
of the associated hydrodynamic interaction being reduced, so
that the net intramembrane and intermembrane excluded vol-
ume interactions have disappeared. Furthermore, our scaling

In conclusion, based on the free energy of a tetheregheory is based on the effective medium argument. A short
membrane, we derive the membrane Langevin equation. Thgavelength cutoff deserves a full renormalization group

equivalent Kirkwood diffusion equations for the probability study. The more interesting behavior of a tethered membrane
distributions are obtained for zero and finite concentrationn g poor solvent is under investigation.

membrane solutions. Furthermore, there exist two time
scales which are separated by the external dimension 4/(2
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