
PHYSICAL REVIEW E, VOLUME 63, 061207
Dynamic scaling theory for a tethered membrane in solution
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We present the dynamic scaling behavior for the specific viscosity and diffusion coefficient of a single
membrane and membranes with nonzero concentration in solution. Starting from the membrane free energies,
we derive their Langevin equations. The corresponding Kirkwood diffusion equation, describing the time
evolution in configuration space, contains two kinds of time scales that are separated by the external dimension
4/(22D) where D is the dimension of the internal space. These time scale separation behaviors depend
strongly on the hydrodynamic screening effect. For a single membrane solution, we resolve the dynamic
scaling exponents for the diffusion coefficient and intrinsic viscosity by the dimension reduction method. For
a concentrated membrane solution, the effective excluded volume strength and draining parameter are intro-
duced. The effective medium argument is applied to obtain a concentration dependent power law form for the
specific viscosity and diffusion coefficient, whose results contribute to a fundamental understanding of mem-
brane in solution and of hydrodynamic screening and excluded volume effects in many different solvents.
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I. INTRODUCTION

Scaling behavior is a widely accepted concept, and ex
in many physical systems such as magnetic, polymer, m
brane, and disordered systems. The static scaling theor
polymer solutions was initiated in Refs.@1–7#. These theo-
ries provide power laws for various quantities such as
structure factor and the second virial coefficient. A simp
and systematic derivation was given by Kosmas and Fr
@8#. In order to generalize the static scaling result, the auth
of Refs. @9–14# introduced the dynamic scaling theory fo
polymer solutions. Moreover, Adler and Freed~AF! @15#
gave a systematic derivation of the dynamic scaling the
for the diffusion coefficient and specific viscosity by appl
ing the Kirkwood diffusion equation to polymers. The
single polymer theory is based upon a real space Oseen
sor, and is valid for an external space dimensiond,4. Simi-
larly, Marqusee and Deutch@16# ~MD! extended the AF
method tod.4.

A tethered membrane is a general extension of a polym
and has attracted a great deal of attention within the last
decades. Its fundamental static scaling behavior has b
studied by scaling theory@17#, and static renormalization
group theory@18–20#. Moreover, dynamic behaviors of th
membrane, such as the dynamic radius of gyration expo
and the single monomer diffusion exponent were studied
Refs.@21–26#.

In the present paper, we generalize our previous w
@17# to study the dynamic scaling behavior of a tether
membrane dissolved in solution. It is well known that t
dynamic properties of a polymer in dilute solution are us
ally treated as Brownian motion. Based on the generali
membrane free energy suggested by Yang and Sheu@17#, we
derive a Langevin equation for membrane dynamics.
equivalent Fokker-Planck equation can then be elabora
However, the membrane Kirkwood diffusion equation co
tains two time scales. The choice of these time scales
1063-651X/2001/63~6!/061207~15!/$20.00 63 0612
ts
-

of

e

d
rs

y

n-

r,
o
en

nt
in

k
d

-
d

n
d.
-
e-

pends on the positivity of the power of the bead number
the draining parameter. We perform the dynamic scaling
havior of the diffusion coefficient and specific viscosity f
both a single membrane and concentrated membranes
solved in solution. In this context, the difference between
polymer solution and a membrane solution is shown in
dynamic critical exponent of a single entity~see Table I! and
in the Huggins coefficient of a dilute solution~see Table II!.

The paper is organized as follows: In Sec. II, we fi
describe the Langevin equation and its corresponding K
wood diffusion equation for a membrane dissolved in so
tion. The scaling behaviors of the diffusion coefficient, i
trinsic viscosity, and dynamic structure factor for a sing
membrane are presented in Sec. III. We subsequently a
thek-space Oseen tensor in Sec. IV, which was suggeste
MD to elucidate the dynamic scaling law of the diffusio
coefficient and specific viscosity for a membrane solution
a finite concentration. Thus, inu solvents and good solvents
the hydrodynamic interaction and the excluded volume in
action have to be renormalized. Based on the effective
dium argument, the concentration dependent part of the
teractions exhibits a power law behavior. Our fini
concentration results cover the limiting law behaviors
both the diffusion constant and specific viscosity.

TABLE I. Dynamical critical exponent for one polymer and on
membrane.vd and v̄d are defined in Sec. III.

Dynamical critical exponent Polymera Membraneb

vd nd (d22)n

v̄d nd

d

3
n

and53/(21d) in Ref. @15#.
bn in Eq. ~13!.
©2001 The American Physical Society07-1
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TABLE II. Huggins coefficient of dilute polymer and membrane solutions~in a good solvent!. The related
notations are explained in Sec. IV.

Dimension

Huggins coefficient

Polymer Membrane

for specific viscosity

d,
4

2-D
a123(2nd21)a2 a12

dn2~22D!d/2

nD2~n21!~22D !d/2
a2

d.
4

22D
a1822(3nd22)a28 a182

dn22

nD2~n21!~22D!d/2
a28

for diffusion coefficient

d,
4

22D
ā12(2nd21)ā2 ā11

~22d!@n2~22D!/2#

nD2~n21!~22D !d/2
ā1

d.
4

22D ā1822(nd21)ā28
ā181

D2~d22!n

nD2~n21!~22D!d/2
ā28
y-
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II. KIRKWOOD DIFFUSION EQUATION OF A TETHERED
MEMBRANE

We first consider a continuous model of a flexible pol
merized membrane with aD manifold flat internal spaceRD,

embedded byRW (x) in a d-dimensional external spaceRd,
wherexPRD ~see Fig. 1!. This model is a general extensio
of Edward’s model of a continuous polymer chain. The a
sociated action or free energy for a single membrane c
figuration is given by

FIG. 1. Self-avoiding tethered membrane with lengthL.
06120
-
n-

F~$RW %,L,l ,vn!/kBT

5
1

2
kE

0

LD

dDx(
a51

D S ]RW

]xa
D 2

1
1

n!
vnE )

i 51

n

dDxi )
j 51

n21

d d
„RW ~xj !2RW ~xn!…, ~1!

where RW (x) denotes the position vector on the membra
from an arbitrary origin to a pointx along the membrane
Here L corresponds to the extended length andl 5k21/D is
the Kuhn length in each dimension,vn is the excluded vol-
ume strength, andkBT is the temperature in units of energ
In Eq. ~1!, the first term is the Gaussian elastic energy a
the interaction term denotes then-body excluded volume ef-
fect for vn.0. In our previous paper@6#, we showed that the
variable transformationsRW 85b(22D)/2l 21RW and x85bl21x,
when applied toF, result in the following homogeneity rela
tion of the free energyF5F($RW 8%, L85Nb, l 851, vn8
5vnl (n22)D2(n21)db(n21)(22D)d/22nD), whereN is the bead
number in each dimension. Furthermore, the correspond
time dependent properties of the membrane solution can
described in terms of the conditional probabili
P($RW %,t;$RW 0%,0) such that a membrane has the configurat

$RW % at time t with the initial configuration$RW 0%. Hence the
evolution ofP is governed by the Kirkwood diffusion equa
tion which is derived from a stochastic process.

To begin with a description of membrane dynamics
solution, we consider the coupled Langevin equations for
membrane and solvent. First we employ the membrane c
formation rW(x,t)5AkRW (x,t). At any beads of the mem
brane, the friction force is balanced by the membra
membrane interaction and random forces. We can t
immediately write down the Langevin equation

]

]t
rW ~x,t !5uW „rW~x,t !,t…2

kBTk

z0

dF̄

drW~x,t !
1uW ~x,t ! ~2!
7-2



e
d

is
t

o
rm

ll
he
e
u

-
fie

f
u

th
n
th

e

ne

r-
e

by
u-
od

da-

g

pli-
em-

ing
u-

e

tic
,

cts
nt,
le

n
by

ters

for-

DYNAMIC SCALING THEORY FOR A TETHERED . . . PHYSICAL REVIEW E63 061207
wherez0 is the bare friction coefficient for a unit membran
area, anduW is the effective fluctuating solvent velocity fiel
at positionrW and timet; F̄ is equivalent toF/kBT. We refer
to uW (x,t) term as a random force whose components sat
the Gaussian white noise spectrum with zero mean and
variance relation

^ua~x1 ,t !ub~x2 ,t !&5
2kBT

z0
dD~x12x2!d~ t2t8!dab ,

a,b51,...,d. ~3!

For a polymer dissolved in solution, the above variance
random force is then reduced to a scalar fo
^u(x1 ,t)u(x2 ,t)&5(2kBT/z0)dd(x12x2)d(t2t8), whered
indicates the dimension in Eq.~3!.

Now we consider the solvent velocity field. It is we
known that the fluctuating solvent velocity field obeys t
Navier-Stokes equation, which contains the friction forc
due to the membrane and the random thermal velocity fl
tuation in the fluid,

r
]

]t
uW ~yW ,t !5h0¹W 2uW ~yW ,t !2¹W p2

kBTk

l D

3E
0

LD

dDx
dF̄

drW~x,t !
dd@yW2RW ~x,t !#1 fW~yW ,t !,

~4!

wherer is the solvent density,h0 is the solvent viscosity and
the position vectoryWPRd. Herep is the effective hydrostatic
pressure in the fluid.fW is the hydrodynamic fluctuation ran
dom force density with zero mean, and its variance satis

^ f a~yW ,t ! f b~yW 8,t8!&522kBTkh0¹W 2dd~yW2yW 8!d~ t2t8!dab .

~5!

Furthermore, the solvent velocity fielduW (yW ,t) obeys the in-
compressibility condition:¹•uW 50.

In order to discuss the membrane dynamics, it is use
for us to transform the preceding stochastic Langevin eq
tion into an equivalent probability description, such as
corresponding Kirkwood diffusion equation in configuratio
space. The transformation of the Langevin equation into
Kirkwood diffusion equation is carried out by ak-space
method, and the Fourier transform of the Naiver-Stok

equation is defined byuW kW(t)5*ddyeikW•yWuW (yW ,t). We elimi-
nate the pressure term and obtain the transversal compo
of Eq. ~4!, that implies the incompressibilitykW•uW k50, such
as

r
]

]t
uW kW~ t !5F 12

kWkW

k2GF2h0kk2uW kW2
kBTk

l D

3E dDx
dF̄

drW~x,t !
eikW•RW ~x,t !G1 fW

kW
'

~ t !. ~6!
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Here1 is a (d3d)-dimensional tensor matrix, and the supe
script' denotes the vector components orthogonal to thk
direction.

According to the method established in some detailed
Ma and Mazenko@27#, the above time-dependent Landa
Ginzberg equation can be transformed into the Kirkwo
diffusion equation by averaging out the noises, i.e.,uW and fW .
Consequently, the Kirkwood diffusion@28# equation turns
out to be

]

]t
P~$RW %,t !5H E

0

LD3LD

dDxdDx8
d

dRW ~x,t !
F 1dD~x2x8!

kBT

z0

1r0
2 kBT

h0

T„RW ~x!2RW ~x8!…G
3F d

dRW ~x8,t !
1

dF̄

dRW ~x8,t !
G J P~$RW %,t ! ~7!

where T„RW (x)2RW (x)8)…5(2p)2d*ddk exp@ikW•„RW (x)
2RW (x8)…#k22 is the real space Oseen tensor that is a fun
mental quantity in all dimensions, andr0 is the mode cou-
pling constant.

Equation~7! is the starting point of our dynamical scalin
analysis. However, the time scale in Eq.~7! is not unique.
There are two time scales such as

t85t
kBT

h0
S b~22D !/2

l D d

from the r0
2(kBT/h0)T„RW (x)2RW (x8)… term and t9

5t(kBT/z0)(b2/ l 21D) from the dD(x2x8)(kBT/z0) term.
This makes the study of membrane dynamics quite com
cated. The choice of these time scales depends on the m
brane concentration. In addition, the criteria of determin
which time scale is suitable is based on the following arg
ments. When the concentrationc is equal to zero, we choos
t8 for d,4/(22D) and t9 for d.4/(22D). On the con-
trary, whencÞ0, we uset9 for d,4/(22D) and t8 for d
.4/(22D). The reason for this is due to the asympto
behavior of the bead numberN in the draining parameter
i.e., the draining parameter has to converge whenN→`.

III. DYNAMIC SCALING FOR A SINGLE MEMBRANE

In this section, we begin by considering some basic fa
on the dynamic scaling behavior of the diffusion coefficie
intrinsic viscosity, and dynamic structure factor for a sing
membrane dissolved inQ and good solvents.

A. Diffusion coefficient

According to the Kirkwood diffusion equation, we ca
see that the membrane dynamical behavior is governed
the set of membrane and solvent dependent parame
$kBT/z0 , kBT/h0 , L, k, and vn%. In this system, the time
scale of the solvated membrane system follows the trans
7-3
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SHEH-YI SHEU AND DAH-YEN YANG PHYSICAL REVIEW E63 061207
mation t8 or t9. Linear response theory predicts that t
single membrane diffusion coefficientDd may be written as

Dd5
1

d E0

`

dt^V~ t !V~0!&, ~8!

whereV(t) is the velocity of the center of mass of the mem

brane, and is equal to (1/LD)*0
LD

dDx(]/]t)RW (x,t). The term
in angular brackets in Eq.~8! indicates the ensemble averag
and is expressed in terms of the probability distribution t
is obtained by solving the Kirkwood diffusion equation.

To write down the scaling function, we substitute Eq.~7!
into Eq. ~8!, which results in the dynamic scaling relatio
ships

Dd5
kBT

h0l d22 N22Db~d/221!~22D !22D

3 f DS h0

z0

bD1~22D !~22d!/2

l D122d ,Nb,vn

3 l ~n22!D2~n21!db~n21!~22D !d/22nDD ,

for d,
4

22D

5
kBT

z0

1

~Nb!2

bD

l D

3 f DS z0

h0
l 21D2db221d~22D !/2,vnl ~n22!D2~n21!d

3b~n21!~22D !d/22nDD for d.
4

22D
. ~9!

The above equation is true for anyb.0. Hence making the
selectionNb51 yields the diffusion coefficient

Dd5
kBT

h0l d22 N~d/221!~D22! f D~Y21,Z!

for d.
4

22D

5
kBT

z0

N2D

l D f D~Y,Z! for d.
4

22D
.

~10!

Here, for our convenience, we refer toZ as
vnl 2dNnD2(n21)(22D)d/2 and to Y as
(z0 /h0) l 21D2dN22(22D)d/2.

The scaling functions in Eq.~10! contain the hydrody-
namic interaction and excluded volume effect. This deser
more exploration. Recall that, in Eq.~4.1! of Ref. @5# when
the internal dimensiond.4 and in the limit of large bead
number in each dimensionN→`, both the excluded volume
effect and the hydrodynamic interaction are irrelevant for
polymer case. In fact, in our membrane system, the situa
06120
,
t

s

e
n

is more complicated. The hydrodynamic interaction~the Y
term! approaches zero whenN→`. On the other hand, the
excluded volume strength~the Z term! also vanishes while
2nD,(n21)(22D)d. Hence both the excluded volume e
fect and the hydrodynamic interaction are irrelevant wh
the dimensional lower bound satisfies 2/(4/d11).D for n
52. This is denoted as a freely draining Rouse type beh
ior. Moreover, the monomer diffusion coefficient is irre
evant for largeN when d,4/(22D). If D.@2(d22)#/d
and vn50 ~Q solvents!, the diffusion coefficientDd of a
single membrane is reduced to the well known nonfree dra
ing Rouse-Zimm result

Dd5
kBT

h0l d22 N2~d/221!~22D ! f D~0!. ~11!

In addition, in good solvents, the excluded volume effe
sets in, andZ@1. If we takeN→`, the membrane diffusion
coefficient becomesDd5(kBT/h0l d22)N(d/221)(D22)f D(Z).
However, in good solvents, the diffusion coefficient displa
a power-law dependenceDd;N2vd. We require thatf D is
determined by its argument through a power law form. A
suming that the scaling functionf D(Z) scales asZw, we
recognize that the scaling relation of the diffusion coefficie
obeys a relationship such as

Dd5cD

kBT

h0l d22

3N~d/221!~D22!Z2@vd1~d/221!~D22!#/@nD2~n21!~22D !d/2#,

~12!

wherevd is a new dynamic scaling exponent.
To solve the dynamic scaling exponent, we conside

membrane confined between two infinite planes with a d
tancea apart~see Fig. 2!. The scaling relation of the confine
membrane must be reduced to the unconfined result aa
→`, assuming that there exists only one characteri
length for the membrane diffusing a distanceR. This charac-

FIG. 2. A membrane confined between two infinite planes d
tancea apart.
7-4
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teristic length enables us to obtain the scaling relation for
confined membrane ind dimensions, i.e.,

Dd5
kBT

h0
N2vdl 22d

3~vnl ~n22!D2~n21!d)@~d/221!~22D!2vd#/@nD2~n21!~22D !d/2#

3gD~a/R!

for d,4/(22D), wheregD@(a→`)/R5`#5const.
At this stage, we can truncate the diffusion coefficient t

lower dimension. In the limita/R→0, the scaling behavio
of the confined-membrane is the same as the scaling be
ior of the unconfined membrane in (d21) dimensions. As-
suming that we have a power law form for the scaling fun
tion gD(q) asqw. The same results are obtained by assum
that R is the static radius of gyrationRG , or a dynamic
length RD defined by the Stokes-Einstein relationDd

5const3(kBT/h0)(1/RD
d22). This consideration gives us th

static radius of gyrationRG
2 ; l DL22DZw1, where
,
fo

e
r-

u
n
on

06120
e

a

v-

-
g

w15
2n2~22D !

nD2~n21!~22D !d/2
.

So we obtain we obtain the characteristic length

RG;Nnvn
@2n2~22D !#/@2nD2~n21!~22D !d# ~13!

wheren5(22D)/2 plus a correction term@6#.
Next we can investigatevd . We first proceed with the

static definition ofRG and find that the scaling law for th
confined membrane ind dimensions in the limita/RG→0
becomes

Dd;N2vdvn
@~d/221!~22D !2vd#/@nD2~n21!~22D !d/2#

3N2w2nvn
2w2@2n2~22D !#/@2nD2~n21!~22D !d# .

Equating the powers ofN andvn in d-dimensionalDd with
the related powers in (d21)-dimensionalDd21 , we then
reduce the diffusion coefficient into
Dd215const3~kBT/h0!l 22DN2vd21~vnl ~n22!D2~n21!~d21!!$@~d21!/221#~22D !2vd21%/@nD2~n21!~22D !~d21!/2#,
her
he
fu-
in-

ase

a

ne
-
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where the relationships

vd215vd1w2n ~14!

and

~d/223/2!~22D !2vd21

nD2~n21!~22D !~d21!/2

5
~d/221!~22D !2vd

nD2~n21!~22D !d/2
2w2

2n2~22D !

nD2~n21!~22D !d

~15!

are satisfied. By eliminatingw2 from the previous equations
it may be verified that the first-order difference equation
vd obeys the relation

~d23!~22D !22vd21

2nD2~n21!~22D !~d21!

5
~d22!~22D !22vd

2nD2~n21!~22D !d

2
~vd212vd!„2n2~22D !…

n~nD2~n21!~22D !d!
. ~16!

The above equation shows a recurrence relationship betw
vd and vd21 . Continuing this iteration process, the recu
rence relation is terminated atv1 . Recall that the boundary
conditionv1 should be able to reproduce the polymer res
whenn52 andD51. Typically, in the polymer case and i
good solutions, the hydrodynamic interaction range is c
r

en

lt

-

fined in a very short range, say a few monomers. In ot
words, the range of the hydrodynamic interaction is of t
order of the polymer tube diameter. The translational dif
sion coefficient for a Rouse chain is proportional to the
verse ofN, i.e., v151 for n52 andD51. Therefore, put-
ting the preceding boundary condition into Eq.~16! yields
the more general boundary condition for the membrane c

v15nD2n~22D !/2 ~17!

for arbitraryn andD. Finally, we substitute Eq.~17! into Eq.
~16! and obtain the general dynamic critical exponent

vd5~d22!n. ~18!

The above equation covers the polymer result of AF. In
two-dimensional external space,vd50 and the diffusion co-
efficient D2 is independent ofN.

B. Intrinsic viscosity

The other interesting physical quantity for a membra
solution is the intrinsic viscosity, which for a single mem
brane is calculated by linear response theory as

@h#5
NA

MkBTh0
E

0

`

dt^J~ t !J~0!&, ~19!

where NA is Avogadro’s number andM is the molecular
weight of the membrane; the related momentum flux ten

is defined byJ(t)52kBT*0
LD

dDxrWx(x,t)@d/drWy(x,t)#F. In
7-5
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general, the scaling relation for the intrinsic viscosity may
obtained by substituting Eq.~7! into Eq.~19! and leads us to
the scaling functions

@h#5
NA

M
l db2d~22D !/2f hS Nb,

h0

z0

bD1~22D !~22d!/2

l D122d ,

vnl ~n22!D2~n21!db~n21!~22D !d/22nDD
for d,

4

22D

5
NAz0

Mh0

l 21D

b2

3 f hS Nb,
z0

h0
l 21D2db221d~22D !/2,

vnl ~n22!D2~n21!db~n21!~22D !d/22nDD ,

for d.
4

22D
. ~20!

By settingNb51, Eq. ~20! is simplified to

@h#5
NA

M
l dNd~22D !/2f h~Y21,Z! for d,

4

22D

5
NAz0

Mh0
l 21DN2f h~Y,Z! for d.

4

22D
. ~21!
s

he
s

06120
eIn higher dimension, due to the same argument suggeste
the diffusion coefficient, both the excluded volume effe
and the hydrodynamic interaction are irrelevant. Hence
obtain the freely draining Rouse behavior forQ solvents as

@h#5
NA

M

z0

h0
l 21DN2f h~0!. ~22!

Conversely, in lower dimension and inQ solvents, Eq.~21!
reduces to

@h#5
NA

M
l dNd~22D !/2f h~0!, ~23!

whenN→`. This is the general Rouse-Zimm result.
For good solvents,@h# displays a different power law

form from N. We require the intrinsic viscosity scaling rela
tionship @h#;N3v̄d, i.e.,

@h#5
NA

M
l 3N3v̄d

3~vnl ~n22!D2~n21!d!@3v̄d2d~22D !/2#/@nD2~n21!~22D !d/2#gh

Herevd is a new dynamic scaling exponent of the intrins
viscosity.

We can re-express thegh part in terms of a power law
form qw. Then, the intrinsic viscosity becomes
@h#5const3~NA /M !l 3N3v̄d2w3n3 l @~n22!D2~n21!d#@3v̄d2d~22D !/2#/@nD2~n21!~22D !d/2#

3vn
@3v̄d2d~22D !/2#/@nD2~n21!~22D !d/2#2w3@2n2~22D !#/@2nD2~n21!~22D !d#.
fore

rnal
s in

ight
ti-
This enables us to determine the recurrence relationship
the powers

3v̄d2153v̄d2w3n ~24!

and

3v̄d212~d21!~22D !/2

nD2~n21!~22D !d21)/2

5
3v̄d2d~22D !/2

nD2~n21!~22D !d/2

2w3

2n2~22D !

2nD2~n21!~22D !d
. ~25!

Following the same argument in Sec. III A, we obtain t
remarkable boundary condition for the membrane case a
of 3v̄15nD/32~n24!~22D !/6, ~26!

with the requirement of Rouse-like behavior when@h# is re-
duced to the polymer case in good solvents. We there
have the general dynamic exponent

3v̄d5dn. ~27!

Perhaps the most striking feature is that when the exte
dimension is larger than one, both the dynamic exponent
Eqs. ~18! and ~27! are independent ofn and the internal
dimension. Note, in particular, thatv̄d ~or vd) is the same
for polymers and membranes in dimensiond53.

C. Dynamic structure factor

The experimentally measured coherent neutron and l
scattering signal intensities, which carry information per
7-6
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nent to density-density correlations in membrane solutio
are proportional to the spectrum structure factor

S~kW ,v!52 Re lim
«→0

E
0

`

dt^r~kW ,t !r~2kW ,0!&e2~ iv1«!t,

~28!

where the density distribution is defined by the Fourier tra
form of the configuration vector r(kW ,t)

5(1/LD)*0
LD

dDx exp„ikW•RW (x,t)…. Using now the correspon
dence between the structure factor and the diffusion co
cient, the half-width of the Lorentzian distribution of th
structure factor

S~kW ,v!52 Re@ iv1k2Dd~kW ,v!#21^ur~kW ,0!u2& ~29!

for a single membrane density gives the generalized di
sion coefficient. HerekW5uku.
06120
s,

-

fi-

-

Now we can evaluate the scaling behavior ofDd(kW ,v).
We first setN5L/ l and the Fourier transform of the densi
distribution is expressed as

r~kW ,t !5
1

~Nb!D E
0

~Nb!D

dDx8 exp@ ikW lb ~D22!/2
•RW 8~x8,t8!#.

Using the time scale relationships

v8t85v8t
kBTb~22D !/2

h0l d 5vt

and

v95v
z0

kBT
l 21Db22,

we arrive at the following scaling relations of the dynam
structure factor as
ult
is

fer

s

S~kW ,v!

^ur~kW ,0!u2&
52 ReF iv1k2

kBT

h0l d22
b~12d/2!~D22! f DS klb~D22!/2,v

h0l d

kBT
b~D22!d/2,Nb,

h0

z0

bD1~22D !~22d!/2

l D122d
,

vnl ~n22!D2~n21!db~n21!~22D !d/22nDD G21

for d,
4

22D

52 ReF iv1k2l 2DbDf DS klb~D22!/2,v
z0

kBT
l 21Db22,Nb,

z0

h0

l 21D2dbd~22D !/222,

vnl ~n22!D2~n21!db~n21!~22D !d/22nDD G21

for d.
4

22D
.

By making the selectionb5N21, the above equation permits the construction of a general scaling form forDd :

Dd~kW ,v!5
kBT

z0
l 2DN2Df DS klN~22D !/2,v

z0

kBT
l 21DN2,ZD for d.

4

22D

5
kBT

h0l d22 N~d/221!~D22! f DS klN~22D !/2,v
h0

kBT
l dNd~22D !/2,ZD for d,

4

22D
. ~31!

Here the factorY has been ignored asN→`. For long wavelength, low frequency, andQ solvents, we can see that the res
of the Rouse-Zimm behavior in Eq.~10! is reobtained. In good solvents,Z@1, we know that the membrane dimension
characterized by the crumpled dimensionRG in Eq. ~13! instead of by the unperturbed dimensionN(22D)/2l . Hence we obtain
the generalized diffusion coefficient as

Dd~kW ,v!5
kBT

h0RG
d22 f DS kRG ,v

h0

kBT
RG

d D . ~32!

Conversely, in the long wavelength, low frequency regime, Eq.~12! is recovered. For a large momentum trans
klN(22D)/2@1, and only the local property can be detected. In this respect, the generalized diffusion coefficient isN indepen-
dent. This results in the well known simplified dynamic scaling relationship for the generalized diffusion coefficient a
7-7
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Dd~kW ,v!55
kBT

h0
k fD,1S v

h0

kBT
k2dD , vn50

kBT

h0
k fD,2S v

h0

kBT
k2dD , Z@1

kBT

h0
k,v

h0

kBT
k2d!1

6 for d,
4

22D

55
kBT

z0
k~22D !/2l ~223D !/2f D,1S v

z0

kBT
kD22l 2DD , vn50

kBT

z0
k~22D !/2l ~223D !/2f D,2S v

z0

kBT
kD22l 2DD , Z@1

kBT

z0
k~22D !/2l ~223D !/2,v

z0

kBT
kD22l 2D!1

6 for d.
4

22D
. ~33!
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When we check the above equation, we find that, in
lower dimension, the dynamic diffusion coefficient is a fun
tion of the solvent viscosity. However, in a higher dime
sion, the dynamic diffusion coefficient depends only on
membrane bare friction.

IV. NONZERO CONCENTRATION

In Sec. IV A the dynamic scaling theory for a single mem
brane dissolved in solution is extended to nonzero conc
tration. Them-membrane free energy is proposed and
renormalized draining parameter and excluded volu
strength are introduced. InQ solvents, only one renormal
ized draining parameter is taken to describe the transi
from nondraining to free-draining behavior. However, f
good solvents, based on the effective medium argum
both the renormalized draining parameter and the exclu
volume strength are required. The arguments presented
low deal mainly with the behaviors of the specific viscos
and diffusion coefficient.

For a membrane solution with a nonzero concentrati
the membrane-membrane interaction starts to set in. We
eralize the one membrane free energy@Eq. ~1!# to the
m-membrane free energy, and the intramembrane and in
membrane excluded volume effects are included. Hence
dynamic scaling relationship of the nonzero concentrat
membrane solution follows an extension of the preced
work on the single membrane free energy. We first wr
down them-membrane free energy as@17#,

Fm

kBT
5

1

2
k (

a51

m E
0

LD

dDx(
a51

D S ]RW a

]xa
D 2

1
1

n!
vn (

a,b51
aÞb

m E
0

LD

)
i 51

n

dDxi )
j 51

n21

dd
„RW a~xj !2RW b~xn8!….

~34!
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Following the same procedure in Sec. II, we then perfo
the nonzero membrane concentration Kirkwood diffusi
equation

H ]

]t
2 (

a,b51

m E
0

LD

dDxE
0

LD

dDx8
d

dRW b

3F kBT

z0

1dD~x2x8!dab1
r0

2kBT

h0

T„RW a~x!2RW b~x8!…G
3F d

dRW a

1
dF̄

dRW a

G J P5dD~x2x8!, ~35!

whereF̄m5Fm /kBT. Moreover, applying the scale transfo
mations in Sec. II to the free energy in Eq.~34! leads to the
homogeneity relation

Fm~RW a ,L,l ,vn!5Fm~RW a8 ,Nb,1,vn

3 l ~n22!D2~n21!db~n21!~22D !d/22nD!,

~36!

and the time scales obey the scaling relationships
7-8
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tFS d

dRW a

,RW a ,L,l ,vn ,
kBT

z0

,
r0

2kBT

h0
D

5t9FS d

dRW a8
,RW a8 ,Nb,1,vnl ~n22!D2~n21!db~n21!~22D !d/22nD,1,

z0

h0

l D122d

bD1~22D !~22d!/2
5h,D for d,

4

22D

5t8FS d

dRW a8
,RW a8 ,Nb,1,vnl ~n22!D2~n21!db~n21!~22D !d/22nD,1,

h0

z0

l d222DbD2~22D !~d22!/25h.D for d.
4

22D
. ~37!
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HereF represents the evolution equation of the second t
on the left hand side of Eq.~35!. Therefore, Eqs.~36! and
~37! provide us with the scaling variables for the dynam
scaling functions.

With the above argument of the homogeneity relation,
are ready to discuss the dynamic properties. In the fi
concentration membrane solution, due to the membra
solution and membrane-membrane interactions, hydro
namic interaction sets in and then the draining paramete
required. This draining parameter shows quite a different
havior for c50 andcÞ0. For example, in the dimensiond
.4/(22D), we useh5Y for c50 andh&5Y21 for cÞ0.
Conversely, in the dimensiond,4/(22D), we chooseh
5Y21 for c50 andh^5Y for cÞ0. Recall that, in the work
of MD, the time scales separated byd54 are not valid when
the polymer scaling relationship is extended to a membr
solution with non-zero concentration.

A. Specific viscosity

In this section, we study the dynamic scaling behavior
the specific viscosity forQ solvents and good solvents in
th

06120
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finite concentration membrane solution. Effective mediu
arguments are invoked for the solvent influences. Hence
draining parameter and excluded volume effect are scree
by membrane-membrane interactions and membrane-so
interactions.

The specific viscosityhsp can now be generalized, due t
the linear response theory, to

hsp~c!5
1

kBTh0V E
0

`

dt^J~ t !•J~0!&, ~38!

whereV is the system volume and the momentum flux ten

is defined by J(t)52kBT( l /b)D*0
(Nb)D

dDs8RW ax8 (s8,t8)

d/(dRW ay8 )F̄m(RW B8 ,L8,l 8,vn8). In this scenario, the scaling
forms for the specific viscosity become
hsp~c!5
z0

h0V
l 21db22 f̂ hspS m,Nb,vnl ~n22!D2~n21!db~n21!~22D !d/22nD,

z0

h0
l D122db2D2~22D !~22d!/2,Vbd/2l 2dD ,

for d,
4

22D

5
l d

Vb~22D !d/2 f̂ hspS m,Nb,vnl ~n22!D2~n21!db~n21!~22D !d/22nD,
h0

z0
l d222DbD2~22D !~d22!/2,Vbd/2l 2dD ,

for d.
4

22D
. ~39!
We can now introduce the membrane concentration via
volume relation (m/V)(b1/2l 21)d5c(NA /M )(b1/2l 21)d and
setNb51. Then Eq.~39! is reduced to

nsp~c!

c
5

z0

h0

NA

MA
l 21DN2 f̂ hspS c

c0*
,h^ ,ZD for d,

4

22D
e
5

NA

MA
l dN~22D !d/2f̂ hspS c

c0*
,h& ,ZD for d.

4

22D
,

~40!

where the critical concentrationc0* is denoted as
(b1/2l 21)dMA /NA . This characteristic concentrationc0* is
7-9
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recognized as the membrane beginning to interpenetrate
Q solvent, and the draining parameter which measures w
the hydrodynamic interaction starts to appear. In the pre
case, we require that the power ofN in the draining param-
eter is positive whencÞ0. However, as the solution conce
tration is decreased to zero, the draining parameter show
inverse behavior, i.e., the draining parameter approac
zero asN increased. This means that the powers ofN in h

.
,

are negative.

Q solvents

For a Q solvent, we mean that both the intermembra
and intramembrane bead-bead interactions vanish. Typic
only hydrodynamic interactions are screened in this solut
One of the synthesized tethered membrane, for exampl
the cross-linked poly~methyl methacrylate! @19,29#. Since
acetone and toluene, etc, have been used as theQ solvent for
poly~methyl methacrylate! @30#, and they could be a goo
choice asQ solvents for the cross-linked poly~methyl meth-
acrylate!. Settingvn50, the scaling relation for the specifi
viscosity is simplified to

hsp~c!

c
5

z0

h0

NA

MA
l 21DN2 f̂ hspS c

c0*
,h^,0D , for d,

4

22D
.

~41!

At infinite dilution c→0, the only relevant variable is th
draining parameterh^ . Moreover, in the limitN→` or h^
→`, the self-friction z0 becomes irrelevant. This ensure
that f̂ hsp

obeys the scaling fromf̂ hsp
(0,q,0);qw4 while w4 is

determined by the requirement thathsp(0)5c@h# is inde-
pendent ofz0 . The appropriate choice ofw4 is 21. Hence
we have

@h#5ah

NA

MA
l dN22d~22D !/25

an

c0*
, ~42!

whereah5const andc0* 5c0* /@h#. This is the Rouse-Zimm
result. Note thatc0* and @h# are interchangeable.

As the membrane concentration increases, the hydro
namic screening effect starts to set in. There are two re
malized screening parameters such as the draining stre
and the excluded volume effect. We chooseh^(c) as the
screened hydrodynamic interaction, i.e.,hsp(c)/c5(z0 /h0)
3(NA /MA) l 21DN2 f̂ hsp

(h^(c)). Comparing to Eq.~41! leads

to the general expression hsp(c)/c5(z0 /h0)
3(NA /MA) l 21DN2 f̂ hsp

„h^gh(c@h#)…. This defines the

draining strength,h^(c)5h^gh(c@h#), which describes the
strength of the hydrodynamic interaction. However, t
boundary condition ofgh(c@h#) remains to be determined
At c50, we require thath^(0) is equal toh^ , i.e., gh(0)
51. Conversely, asc→`,hsp reduces to the Rouse resu
i.e., hsp(`);c(z0 /h0)(NA /MA) l 21DN2. Thus we have
gh(`)50, i.e., f̂ hsp

„h^gh(`)…;1.
With the preceding boundary conditions, we are more

teresting in the general form ofgh . By using the argumen
of an effective medium,h^(c) is treated as the drainin
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strength for a single membrane dissolved in the effect
medium generated by the solvent and all the other me
branes. Hence, by adding a small amount of membranedc to
the solution, the draining parameter is changed fr
h^(c) to h^(c)gh(dc@h#). Then the concentration depende
draining parameter obeys the statistical relation, i
h^( c̄)5h^(c1dc)5h^(c)gh(dc@h#) or gh((c1dc)@h#)
5gh(c@h#)gn(dc@h#). The general form of the solution o
gh can be expressed asgh(c@h#)5e2ac@h# where a is a
positive constant. We then have the specific viscos
hsp(c)/c5(z0 /h0)(NA /MA) l 21DN2 f̂ hsp

(h^e
2ac@h#). For a

sufficiently large membrane and at very low concentrati
the conditionh^e

ac@h#@1 suggests a power law form for th
scaling functionf̂ hsp

(h^e
2ac@h#);(h^e

2ac@h#)w5, wherew5

is determined by the requirement that in the asymptotic
gime hsp(c)/cuc→05c@h# is independent ofz0 . Therefore,
we find thatw5521, and the specific viscosity becomes

hsp~c!5c@h#eac@h#. ~43!

This case shows a non-power-law form derived from
scaling function, and is valid only for a large membran
Expanding the exponential part in terms of the small conc
tration, we finally obtain the limiting lawhsp(c)5c@h#„1
1ac@h#1O(c2)… for the specific viscosity. Experimentally
a is identified as Huggins coefficient.

Now we turn to consider the higher dimensional case, i
d.4/(22D). By setting vn50, the specific viscosity be
comes

hsp~c!

c
5

NA

MA
l dN~22D !d/2f̂ hspS c

c0*
,h&,0D . ~44!

For a nonzero concentration solutionc→0 and large
bead numberN→`, or h&→`, the specific viscosity
obeys the scaling form, i.e., hsp(c)/cuc→05@h#

5(NA /MA) l dN(22D)d/2h&
w6. The limiting behavior is ex-

pected to be proportional to§0 /h0 , and hence the powerw6
is equal to21. Therefore, we find that the Rouse res
@h#5ah /c0* is recovered.

Now we turn to consider the higher concentration me
brane solution. Substitutingh&(c) into Eq. ~40! leads to
hsp(c)/c5(NA /MA) l dNd(22D)/2f̂ hsp

„h&gh(c@h#)… where the

definition of h&(c)5h&gh(c@h#) is employed. In particular,
the boundary condition ofgh(c@h#) at c50 is gh(0)51. As
the membrane concentration approaching infinity, the
tanglement effect can be ignored, andhsp(`)
}c(NA /MA) l dN(22D)d/2f̂ hsp

(0), i.e., gh(`)50. Hence the

general solution has the unique formh&(c)5h&e
2a8c@h#,

wherea8 is a positive constant. The specific viscosity in t
higher dimension then satisfies the following scaling form

hsp~c!

c
5

NA

MA
l dN~22D !d/2f̂ hsp

~h.e2a8c@h#!. ~45!

For a sufficiently large membrane and dilute solution, t
condition h&e

2a8c@h#@1 implies a power law form for the
7-10
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scaling function f̂ hsp
(h&e

2a8c@h#);(h&e
2a8c@h#)w7, whereas

w7 is determined by the requirement similar to Eq.~43!.
Consequently, we realize that the powerw7 is equal to21,
and the specific viscosity becomeshsp(c)5c@h#ea8c@h#. In
the higher dimension, we also evaluate the non-power-
form for the scaling function. By expanding the exponent
part in terms of a small concentration, a similar limiting b
havior of hsp(c) in d,4/(22D) is obtained ashsp(c)
5c@h#„11a8c@h#1O(c2)….

Good solvents

In good solvents, both the hydrodynamic interaction a
the excluded volume effect are screened, i.e.,h

.
, andvn are

renormalized. In this context, the general expression of
specific viscosity in good solvents is then modified by t
concentration, and is expressed as

hsp~c!

c
5

z0

h0

NA

MA
l 21DN2 f̂ hsp

Xh^gh,1S c

c0*
,ZD ,Zgh,2S c

c0*
,ZD C,

~46!

when d,4/(22D). In the above equation, the intermem
brane excluded volume effect is presented ingh,1 andgh,2 .
Similarly, the intramembrane excluded volume effect is d
played inZ. As usual, applying the power law form to eac
individual concentration correction terms gh,i

5ḡh,i@(c/c0* )Zw8#, wherei 51 and 2, and under the cond
tionsZ@1 and (1/c0* )Zw8;N3n, we obtain the power of the
argument ofgh,i as

w85
3n2d~D22!/2

nD2~n21~22D !d/2
.

In addition, in good solvents, the above specific viscos
becomes

hsp~c!

c
5

z0

h0

NA

MA
l 21DN2 f̂ hsp

Xh^ḡh,1S c

c* D ,Zḡh,2S c

c* D C,
~47!

wherec* is the characteristic concentration@4# and is equal
to

~MA /NA!l dN23n

3~vnl ~n22_D2~n21!d!2@3n2d~D22!/2#/@nD2~n21!~22D !d/2#.

In particular, we adopt the zero-concentration boundary c
ditions asḡh,1(0)5ḡh,2(0)51. In order to recover our pre
ceding infinite dilution result, the limiting law of specifi
viscosity becomes hsp(c)/cuc→05(z0 /h0)
3(NA /MA) l 21DN2 f̂ hsp

(h^ ,Z). As N→` and at infinite di-

lution, f̂ hsp
(h^ ,Z) can be expressed in terms

(1/h^) f̂ hsp
(Z), when h^@1. When the excluded volume e

fect is strong, thef̂ hsp
8 (Z) term approaches the power la

form Zwg as Z@1. The final result of the limiting law of
specific viscosity, i.e.,
06120
w
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e
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hsp~c!

c U
c→0

5@h#5ah8 /c* , ~48!

is in good agreement with the result of polymer theory. D
to the properties of gh,i(c@h#)5exp(2aic@h#) and
ḡh,i(c/c* )5gh,i(c@h#) when c→`, hsp(`) should
be proportional to (z0NA /h0MA) l 21DN2. Hence thea i
are positive constants. Obviously, the limiting la
of specific viscosity is then reduced tohsp(c)/c
5(z0NA /h0MA) l 21DN2 f̂ hsp

(h^e
2a1c@h#,Ze2a2c@h#). If both

h^e
2a1c@h# and Ze2a2c@h# are much larger than 1, then, i

good solvents, we can ignore one ofa i . Thus we have the
exponential relationship of the nonzero concentration s
cific viscosity

hsp~c!

c
5@h#exp~a1c@h#2w9a2c@h#!, ~49!

where w95@dn2(22D)d/2#/@nD2(n21)(22D)d/2#.
The Huggins coefficienta12w9a2 involves the hydrody-
namic interaction and the excluded volume effect. Nevert
less, the related coefficientsa i cannot be solved by scalin
theory. The limiting cases in Eqs.~48! and~42! are valid for
a membrane solution at low concentration and large me
branes.

Now we examine the specific viscosity when the exter
dimension is larger than 4/(22D), i.e.,

hsp~c!

c
5

NA

MA
l dN~22D !d/2f̂ hspS c

c0*
,h& ,ZD

5
NA

MA
l dN~22D !d/2f̂ hsp

Xh&gh,1S c

c0*
,ZDZgh,2S c

c0*
,ZD C.

~50!

In the present case, the demarcation between dilute and
midilute behaviors in good solvents occurs at a character
concentration, i.e.,c* ;MAN2dn, which reflects the per-
turbed membrane dimension. Hence the power law form
gh,i follows from gh,i5ḡh,i@(c/c0* )Zw10# for i 51 and 2, and
Z@1, with the requirement of c0* 5(MA /NA)
3@ l dNd(22D)/22d#21 and (1/c0* )Zw10;N2d(12n). We find,
in particular, thatw10 is equal to@d(n2(22D)/2)#/@nD
2(n21)(22D)d/2#. Note that the bead number in eac
dimension isN. The total number of beads of the tether
membrane isNd. So the demarcation concentration is diffe
ent from the polymer solution. The specific viscosity is th
reduced to hsp(c)/c
5(NA /MA) l dN(22D)d/2f̂ hsp

„h&ḡh,1(c/c* ),Zḡh,2(c/c* )…

which recovers the infinite dilution result @h#

5@hsp(c)/c#uc→05(NA /MA) l dNd(22D)/2f̂ hsp
(h& ,Z). In ad-

dition, we choose the boundary conditionsḡh,1(0)5ḡh,2(0)
51. At infinite dilution, @h# is proportional toz0 /h0 , as we
obtained in Sec. III B, which results inf̂ hsp

(h& ,Z)

5(1/h&) f̂ hsp
8 (Z) when h&@1. When the excluded volume

effect is strong, i.e., Z@1 and f̂ hsp
8 (Z)
7-11



e-
r

h

r

ic

a
ol
c

e

n

igh
vior
-

y-

use-

ved
the

t

t

SHEH-YI SHEU AND DAH-YEN YANG PHYSICAL REVIEW E63 061207
}Z(dn22)/@nD2(n21)(22D)d/2#, it is verified that @h# is not
equal toah8 /c* . Note that the interchangeability scaling b
havior betweenc* and @h# is no longer obeyed in highe
dimension. Clearly, theḡh,i(c/c* ) are obtained by invoking
the effective medium arguments leading toḡh,i(c/c* )

5gh,i(c@h#)5e2a i8c@h#. The requirement, at very hig
membrane concentration, of hsp(`)
}c(NA /MA) l dNd(22D)/2, indicates thata i8 are all positive.
Consequently, we have the concentration dependent exp
sion of the specific viscosity hsp(c)/c

5(NA /MA) l dNd(22D)/2f̂ hsp
(h&e

2a18c@h#,Ze2a28c@h#). More-

over, when bothh&e
2a18c@h# andZe2a28c@h# are larger than 1

we can simplify the specific viscosity intohsp(c)

5c@h#ekH8 c@h# which suggests that

kH8 5a182
dn22

nD2~n21!~22D !d/2
a28 .

Here kH8 involves the contribution from both hydrodynam
and excluded volume screening effects.

B. Diffusion coefficient

In this section, we consider the diffusion coefficient for
tagged membrane in a finite concentration membrane s
tion. According to linear response theory, we now introdu
the diffusion coefficient for a tagged membrane as

Dd~c!5
1

d E0

`

dt^Va~ t !•Va~0!&, ~51!

where Va(t) is the velocity of the center of mass of th

tagged membrane, (1/LD)*0
LD

dDx(]/]t)RW a(x,t). When the
external dimensiond is smaller than 4/(22D), we employ
the time scalet95t(kBT/z0)@b2/( l 21D)# and obtain the con-
o

or

06120
es-

u-
e

centration dependent diffusion coefficientDd(c)5(kBT/z0)
3(N2D/ l D) f D(h^ ,Z,c/c0* ).

In Q solvents, the draining parameter is defined byh^ and
the reduced concentrationc/c0* is proportional toc@h#. The
diffusion coefficient is then simplified toDd(c)5(kBT/z0)
3(N2D/ l D) f D(h^,0,c/c0* ). As usual, following the method
of solving hsp(c) in Q solvents provides us the diffusio
coefficient Dd(c)5(kBT/z0)(N2D/ l D) f D(h^e

2āc@h#) where
ā is a positive constant. Hence, in the limiting case of a h
concentration membrane solution, the Rouse beha
Dd(`)5(kBT/z0)(N2D/ l D) is recovered. Moreover, the re
quirement thatDs(c) is independent ofz0 for the condition
h^e

2āc@h#@1 results in the asymptotic behavior of the d
namic diffusion coefficient as

Dd~c!5aD

kBT

h0
l 22dN~22D !~22d!/2e2āc@h#. ~52!

Conversely, at zero membrane concentration, the Ro
Zimm result

Dd~0!5aD

kBT

h0
l 22dN~22D !~22d!/2 ~53!

is obtained.
The other interesting situation is the membrane dissol

in a good solvent. In this scenario, we may re-express
diffusion coefficient as Dd(c)5(kBT/z0)
3(N2D/ l D) f D(h^e

2āc@h#,Ze2āc@h#)5(kBT/z0)
3(N2D/ l D) f D(q,z), where ā1 and ā2 are positive con-
stants. In the limitc→0, the scaling function is independen
of z0 , and the asymptotic form off D(q,z) is expressed as
q fD8 (z) for q@1 and the power law form forf D8 (z) is zw

wherez@1. SinceDd is independent ofz0 and is propor-
tional to N2(d22)n, we obtain the diffusion coefficient a
infinite dilution as
Dd~c!5aD8
kBT

h0
l 22dN~22d!n~vnl ~n22!D2~n21!d!@~22d!~n2~22D !/2#/@nD2~n21!~22D !d/2#

3expF2c@h#S ā11
~22d!„n2~22D !/2…

nD2~n21!~22D !d/2
ā2D G , ~54!
ne
on
dity
are

.
ters

ter
w

where aD8 5const, h^e
2ā1c@h#@1 and Ze2ā2c@h#@1. Obvi-

ously, expanding the above equation, we get the sec
virial correction ~Higgins coefficient! k̄H5ā11$@(22d)(n
2(22D)/2)#/@nD2(n21)(22D)d/2#%ā2 . The diffusion
coefficient is then modified to

Dd~c!uexp5Dd~0!„12 k̄Hc@h#1O~c2!…. ~55!

The above equation is valid for low concentration
h^e

2ā i c@h#!1.
nd
Now we consider a higher concentration of membra

solution. In this situation, both the hydrodynamic interacti
and excluded volume effect should be screened. The vali
conditions for membrane solution at high concentration

e2ā i8c@h#!1 where i 51 and 2; ā i8 are positive constants
Hence we are able to employ the renormalized parame
h^(c)5h^gD,1(c@h#) and
vn(c) l (n22)D2(n21)dNnD2(n21)(22D)d/25ZgD,2(c@h#). The
effective excluded volume strength and draining parame
no longer depend onN. Therefore, we require the power la
7-12



the

s

DYNAMIC SCALING THEORY FOR A TETHERED . . . PHYSICAL REVIEW E63 061207
form for gD,i(c@h#)5agD,i
(c@h#)wi whereagD,i

5const, and thewi are chosen in such a way that the effective number of

monomers experiencing a strong excluded volume effect and hydrodynamic interaction is independent ofN. In other words,
h^(c) obeys a power law form such as

h,ag1F NA

MA
l dNd~22D !/221Z@dn2d~22D !/2#/@nD2~n21!~22D !d/2#Gw11

.

Sincec@h# is proportional toc/c0* ,h^(c) is independent ofN. Consequently, the powerw11 is equal to1
2„@42d(22d)#/(d

2dn)… and the screened draining parameterh^(c) is denoted as

agD,1S z0

h0
D l 21D2dS cNA

MA
l dD ~1/2!@42d~22d!#/~d2dn!

~vnl ~n22!D2~n21!d!~1/2!@dn2d~22D !/2#/@nD2~n21!~22D !d/2#@42d~22d!#/@d2dn#.

On the other hand, the effective excluded volume strengthvn(c) l (n22)D2(n21)d3NnD2(n21)(22D)d/2 can be expressed in term
of the power law form

ZagD,2F S cNA

MA
l dN~d/2!~22D !21DZ@dn2d~22D !/2#/@nD2~n21!~22D !d/2#Gw12

.

Here we require that the effective excluded volume strength is independent ofN. Therefore, we have the power

w125
nD2~n21!~22D !d/2

d2dn
.

Substituting these results back to the special viscosity in Sec. III B leads us to the specific viscosity

hsp~c!

c
5

1

agD,1
agD,2

@dn2~22D !d/2#/@nD2~n21!~22D !d/2#
NA

MA
l dN2S cNA

MA
l dD 2~dn22!/~dn2d!

3~vnl ~n22!D2~n21!d!2@~dn22!/~dn2d!#@dn2d~22D !/2#/@nD2~n21!~22D !d/2#. ~56!

Furthermore, the power law form for the diffusion coefficientDd(c), in a good solvent, is simplified to
(kBT/z0k) l 2DN2Dqzw, whereq5h,(c) and z5vn(c). With the requirement ofDd(c) being independent ofz0 in good
solvents, we have the final result of

Dd~c!5agD,1agD,2
@~22d!~n2~22D !/2#/@nD2~n21!~22D !d/2#

kBT

h0
l 22dN2DS cNA

MA
l dD 2@D1~22d!n#/~dn2d!

3~vnl ~n22!D2~n21!d!2@D1~22d!v#/~dn2d!3@dn2d~22D !/2#/@nD2~n21!~22D !d/2#. ~57!
he

the
by

wer
Now we consider the diffusion coefficient for dimensiond
larger than 4/(22D), and adopt the time scalet8
5t(kBT/h0)(b(22D)/2/ l )d in the linear response theory:

Dd~c!5
kBT

h0
l 22dN~d/221!~D22! f S h& ,Z,

c

c0*
D . ~58!

In the above equation, inQ solvents, the draining
parameterh& and the reduced concentrationc/c0* }c@h#
in Eq. ~58! are expected. We therefore find that t
diffusion coefficient can be reduced toDd(c)
5(kBT/h0) l 22dN(d/221)(D22)f D(h&e

2ā8c@h#) which displays
the Rouse behavior

Dd~`!}
kBT

h0
l 22dN~d/221!~D22!, ~59!
06120
when entanglement effects are ignored. Hereā8 is a positive
constant. The requirement ofDd(c) being proportional to
z0

21 produces the asymptotic behavior Dd(c)

5(kBT/z0) l 2DN2De2ā8c@h#. Consequently, atc50, the
freely draining Rouse type result

Dd~0!5
kBT

z0
l 2DN2D ~60!

is recovered.
On the other hand, in good solvents, we modify both

hydrodynamic screening and excluded volume strengths
the concentration, and re-express them in terms of a po
law form. Then the diffusion coefficientDd(c) is denoted as

(kBT/h0) l 22dN(d/221)(D22)f D(h&e
2ā18c@h#,Ze2ā28c@h#) where
7-13
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ā18 and ā28 are positive constants. Asc→0, Dd(c) is proportional toz0
21, the scaling functionf D(q,z) can be expressed a

q fD8 (z) for q@1, while

f D8 ~z!}z@D2~d22!n#/@nD2~n21!~22D !d/2# for z@1.

Finally, the power law form for the diffusion coefficient becomes

Dd~c!5aD8
kBT

z0
l 2DN2~d22!n~vnl ~n22!D2~n21!d!@D2~d22!n#/@nD2~n21!~22D !d/2#

3expH 2c@h#F ā182
~d22!n2D

nD2~n21!~22D !d/2
ā28G J ~61!
re
T
ty
io
m
4/
ve
th
ifi
e

mic
two
ic

od
ex-
ef-
n is
ngth
, so
vol-
ling
ort
up
ane

al
13-
whereaD8 5const. The expansion of Eq.~61! in terms of the
small concentration leads to the limiting law

Dd~c!5Dd~0!@12 k̄H8 c@h#1O~c2!# ~62!

where the Huggins coefficient is

k̄H8 5ā182
~d22!n2D

nD2~n21!~22D !d/2
ā28 .

V. CONCLUSION

In conclusion, based on the free energy of a tethe
membrane, we derive the membrane Langevin equation.
equivalent Kirkwood diffusion equations for the probabili
distributions are obtained for zero and finite concentrat
membrane solutions. Furthermore, there exist two ti
scales which are separated by the external dimension
2D). The choice of the time scales depends on the con
gence of the draining parameter. In this work, we solve
dynamic scaling behavior of the diffusion constant, spec
viscosity, and structure factor in zero and nonzero conc
,
c

G

06120
d
he

n
e
(2
r-
e
c
n-

tration membrane solutions. In this respect, the dyna
scaling behavior of the tethered membrane depends on
fundamentally important effects, namely, the hydrodynam
interaction and the excluded volume strength. InQ solvents,
only the hydrodynamic interaction sets in. However, in go
solvents, both the hydrodynamic interaction and the
cluded volume effect need to be considered. These two
fects are renormalized when the membrane concentratio
increased. The screening effect is due to the coherence le
of the associated hydrodynamic interaction being reduced
that the net intramembrane and intermembrane excluded
ume interactions have disappeared. Furthermore, our sca
theory is based on the effective medium argument. A sh
wavelength cutoff deserves a full renormalization gro
study. The more interesting behavior of a tethered membr
in a poor solvent is under investigation.
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